APPLICATION OF CRISPR CAS SYSTEM IN THE TREATMENT OF GENETIC DISEASES AND COVID-19

Main Article Content

Wajiha Afzal
Iram Saba
Bisma Azam
Hafsa Ismail
Faiza Kausar
Amina Kanwal
Irfana Naz
Mehmooda Munazir
Iqbal Nisa
Muhammad Farhan

Keywords

.

Abstract

Clustered Regularly Interspaced Palindromic Repeats (CRISPR–CAS) system, is an adaptive immunological system found in most prokaryotes.The field of genetic engineering has undergone a revolution as a result of this technology. Apart from its application in genetic engineering biotechnology, CRISPR/Cas's potential for treatment of disease has been explored for various diseases, such as sickle cell disease, neurologic disorders, cancer, etc., wherein CRISPR/Cas components such as ribonucleoprotein, sgRNA/mRNA, plasmid and Cas9/single guide RNA (sgRNA)were delivered. The CRISPR-Cas-based methods also helps in diagnosis of COVID19 infections. The CRISPR-Cas system is being studied for the development of antiviral drugs in addition to its capacity for diagnosis, however no CRISPR-based treatment has yet been authorised for use in humans. The purpose of this review is to describe prospective CRISPR-Cas-based techniques as an alternative therapy for combating genetic diseases and COVID 19 infection.

Abstract 584 | pdf Downloads 76

References

1. Jiang, C., Meng, L., Yang, B. & Luo, X. et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin. Genet.2020;97:73–88
2. Roth, T. L. &Marson, A. Genetic disease and therapy. Annu. Rev. Pathol.2021; 16:145–166.
3. Mohanraju, Prarthana, et al. Alternative functions of CRISPR–Cas systems in the evolutionary arms race. Nat. Revi. Microbio. 2022; 20.6: 351-364.
4. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J.,et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015; 13:722–736.
5. Jackson, S. A., et al. CRISPR-Cas: adapting to change. Sci. 2017; 356:5056.
6. Charpentier, E., Richter, H., van der Oost, J., and White, M. F. et al. Biogenesispathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 2015;39:428–441
7. Nishiyama, J., Mikuni, T., and Yasuda, R. et al. Virus-Mediated Genome Editingvia Homology-Directed Repair in Mitotic and Postmitotic Cells in MammalianBrain. Neuro. 2017;96:755–768.
8. Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S.,Semenova, E., et al. Discovery and Functional Characterization oDiverse Class 2 CRISPR-Cas Systems. Mol. Cell.2015; 60:385–397.
9. Dong, F., Xie, K., Chen, Y., Yang, Y., and Mao, Y. et al. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem. Biophys. Res. Commun. 2017; 482:889–895.
10 Dong, Z. Q., Chen, T. T., Zhang, J., Hu, N., Cao, M., Dong, F., et al. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Res. 2016; 130:50–57.
11. Gao, P., Yang, H., Rajashankar, K. R., Huang, Z., and Patel, D. J. et al. Type VCRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA mediated target DNA recognition. Cell Res. 2016; 26:901–913.
12. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., and Zhang, F. et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat.Protoc. 2019; 14:2986–3012.
13. O’Connell, M. R. et al. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. J. Mol. Biol. 2019;431:66–87
14. Li, B., Zeng, C., Li, W., Zhang, X., Luo, X., Zhao, W., et al. Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing. Cell Rep. 2018; 25:3262–3272.
15. Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., et al. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N.Engl. J. Med.2019; 381:1240–1247.
16. Herrera-Carrillo, E., Gao, Z., and Berkhout, B. et al. CRISPR therapy towards an HIV cure. Briefings Funct. Geno. 2020;19:201–208
17. Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, et al. CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. 2019;176: 254-67
18. Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, et al. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Mol Cell. 2018; 72:380-94.
19. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR–Cas13. Nat. 2017; 550:280-4.
20. Huang CH, Lee KC, Doudna JA. Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Tre. Canc. 2018;4:499-512
21. Papasavva P, Kleanthous M, Lederer CW. Et al. Rare Opportunities CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol Diag. and Ther. 2019; 23: 201-22.
22. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR et al. Multifunctional CRISPR-Cas9 with engineered immuno silenced human T cell epitopes. Nat Commun. 2019;10: 1842
23. Kennedy EM, Cullen BR. Gene Editing: A New Tool for Viral Disease. AnnuRev Med. 2017;68: 401-11
24. Maeder ML, Stefanidakis M, Wilson CJ, BaralR, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019; 25:229-33.
25. McCullough KT, Boye SL, Fajardo D, Calabro K, Peterson JJ, Strang CE, et al. Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque. Hum Gene Ther. 2019; 30:571-89.
26. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Sci.2016;351: 407-
27. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science.2016; 351: 407-
28. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Sci. 2018; 362: 86-91.
29. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al. Adenine base editing inmouse embryos and an adult mouse model of Duchenne muscular dystrophy.NatBiotechnol. 2018; 36: 536-9.
30. Kemaladewi DU, Bassi PS, Erwood S, Al-Basha D, Gawlik KI, Lindsay K, et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature. 2019; 572:125-30.
31. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotech.2016;34:328-33
32. VanLith CJ, Guthman RM, Nicolas CT, Allen KL, Liu Y, Chilton JA, et al. Ex Vivo Hepatocyte Reprograming Promotes Homology-Directed DNA Repair to Correct Metabolic Disease in Mice After Transplantation. HepatolCommun.2019; 3:558-73.
33. Song C-Q, Jiang T, Richter M, Rhym LH, Koblan LW, Zafra MP, et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng. 2020; 4: 125-30.
34. Pankowicz FP, Barzi M, Legras X, Hubert L, Mi T, Tomolonis JA, et al.Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun. 2016; 7: 12642.
35. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, et al. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates alpha1-antitrypsin Deficiency Phenotype. EBioMedicine. 2018; 29: 104-11
36. Song CQ, Wang D, Jiang T, O'Connor K, Tang Q, Cai L, et al. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Hum Gene Ther. 2018; 29: 853-60.
37. Whitsett JA, Wert SE, Weaver TE. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med. 2010; 61: 105-19.
38. Alapati D, Zacharias WJ, Hartman HA, Rossidis AC, Stratigis JD, Ahn NJ, et al. In utero gene editing for monogenic lung disease. SciTransl Med. 2019; 11.
39. Rogan MP, Stoltz DA, Hornick DB. Cystic Fibrosis Transmembrane Conductance Regulator Intracellular Processing, Trafficking, and Opportunities for Mutation-Specific Treatment. CHEST. 2011; 139: 1480-90.
40. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015; 12: 1385-90.
41. Ruan J, Hirai H, Yang D, Ma L, Hou X, Jiang H, et al. Efficient Gene Editing at Major CFTR Mutation Loci. MolTher Nucleic Acids. 2019; 16: 73-81.
42. Muller U, Barr-Gillespie PG. New treatment options for hearing loss. Nat Rev Drug Discov. 2015; 14: 346-65.
43. Gyorgy B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med. 2019; 25: 1123-30
44. Canver, Matthew C., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nat. 2015; 192-197.
45. Alkanli, Suleyman Serdar, et al. CRISPR/Cas9 Mediated Therapeutic Approach in Huntington’s disease Mol. Neurobio. 2023; 60: 1486–1498
46. Al-Gharaibeh, Abeer, et al. Induced pluripotent stem cell-derived neural stem cell transplantations reduced behavioral deficits and ameliorated neuropathological changes in YAC128 mouse model of Huntington's disease. Front. In Neurosci. 2017; 11:628.
47. Tavakoli, Kamand, et al. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech. 2021; 10.3:14.
48. Golas, Monika M, et al. Human cellular models of medium spiny neuron development and Huntington disease. Life sci. 2018; 209: 179-196.
49. Taghavi, Shaghayegh, et al. A clinical and molecular genetic study of 50 families with autosomal recessive Parkinsonism revealed known and novel gene mutations. Mole. Neurobio. 2018; 55: 3477-3489.
50. Scott, Laura, Valina L. Dawson, and Ted M. Dawson. Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes. Experimen. Neuro. 2017; 298: 191-201.
51. Lubbe, Steven, and Huw R. Morris. Recent advances in Parkinson’s disease genetics. J. of neuro. 2014; 261: 259-266.
52. DeJesus, Rowena, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. Elife. 2016; 5: e17290.
53. Gordon, Richard, et al. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat. commu. 2016; 7.1: 12932.
54. Lanctôt, Krista L., et al. Neuropsychiatric signs and symptoms of Alzheimer's disease: New treatment paradigms. Alzheimer's & Dementia: Trans. Res. & Clini. Interven. 2017; 3.3: 440-449.
55. Ortiz-Virumbrales, Maitane, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta neuropatho. Commun. 2017; 5: 1-20.
56. Skov, Marianne, Christine Rønne Hansen, and Tacjana Pressler. Cystic fibrosis–an example of personalized and precision medicine. Apm. 2019; 127.5: 352-360.
57. Russell, Callan. "Cystic Fibrosis and Your Genes."
58. Anzalone, Andrew V., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nat. 2019; 576.7785: 149-157.
59. Fan, Zhiqiang, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI insig. 2018; 3.19.
60. Flores-Pérez, Jóse Ali, et al. Nutrition, cancer and personalized medicine. Trans. Res. and Onco-Omics App. in the Era of Cancer Perso. Genomi.2019: 157-168.
61. Sekar, Durairaj, and Ganesh Lakshmanan. Implications of CRISPR/Cas9 system in hypertension and its related diseases. J. of Human Hyperten. 2021; 35.7: 642-644.
62. Tzelepis, Konstantinos, et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell repor. 2016; 17.4: 1193-1205.
63. Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, et al. KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife. 2017; 6:e18970.
64. Zhang, Han, and Nami McCarty. CRISPR‐Cas9 technology and its application in haematological disorders. Brit. J. of haema.2016; 175.2: 208-225.
65. Grevet, Jeremy D., et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Sci. 2018; 361.6399: 285-290.
66. Jensen, Trine I., Esben Axelgaard, and Rasmus O. Bak. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Brit. J. of haema.2019; 185.5: 821-835
67. Harrison, Andrew G., Tao Lin, and Penghua Wang. Mechanisms of SARS-CoV-2 transmission and pathogenesis.Tre. In immune. 2020; 41.12: 1100-1115.
68. Sood, Shivani, et al. COVID-19 pandemic: from molecular biology, pathogenesis, detection, and treatment to global societal impact. Curr. Pharma. Repor. 2020; 6: 212-227.
69. V’kovski, Philip, et al. Coronavirus biology and replication: implications for SARS-CoV-2.Nat. Rev. Micro. 2021; 19.3: 155-170.
70. Morse, Jared S., et al. learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembio. 2020; 21.5: 730-738.
71. Saxena, Ambrish. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J. of biosci. 2020; 45.1: 87.
72. Gordon, David E., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nat. 2020; 583.7816: 459-468.
73. Atzrodt, Cassandra L., et al. A Guide to COVID‐19: a global pandemic caused by the novel coronavirus SARS‐CoV‐2. The FEBS J. 2020; 287.17: 3633-3650.
74. Price, Aryn A., et al. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proced. Of the Nat. Acad. of Sci. 2015; 112.19: 6164-6169.
75. Nguyen, Tuan M., Yang Zhang, and Pier Paolo Pandolfi. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020; 30.3: 189-190.
76. Abbott, Timothy R., et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 2020; 181.4: 865-876.
77. Wang, Hong-Xia, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemic. Revie. 2017; 117.15: 9874-9906.
78. Xu, Christine L., et al. Viral delivery systems for CRISPR. Virus. 2019; 11.1: 28.
79. He, Wei, et al. GuidePro: a multi-source ensemble predictor for prioritizing sgRNAs in CRISPR/Cas9 protein knockouts. Bioinfo. 2021; 37.1: 134-136.
80. Zhang, Huimin, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mole. Can. 2021; 20: 1-22.
81. Wei, Tuo, et al. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS nano. 2020; 14.8: 9243-9262.
82. Mehta, Aditi, and Olivia M. Merkel. Immunogenicity of Cas9 protein. J. of pharma. Sci. 2020; 109.1: 62-67.
83. Sullivan, Neil T., et al. Designing safer CRISPR/Cas9 therapeutics for HIV: Defining factors that regulate and technologies used to detect off-target editing. Front. In Microbio. 2020; 11: 1872.
84. Simeonov, Dimitre R., et al. A large CRISPR-induced bystander mutation causes immune dysregulation. Communi. Bio. 2019; 2.1: 70.

Most read articles by the same author(s)

1 2 > >>