ENHANCED DYE DEGRADATION USING TITANIUM DIOXIDE-MANGO SEED COMPOSITES: A NOVEL APPROACH TO PHOTOCATALYSIS

Main Article Content

Iftikhar Ahmad Khan
Dr. Rehana Masood
Fatima Mujahid
Dr Haseeb Umar
Saba Nosheen
Farzana Shaheen

Keywords

Titanium dioxide, Mango seed, Photocatalysis, Dye degradation, Composite materials

Abstract

Background: Titanium dioxide (TiO₂) is widely recognized for its effectiveness in photocatalysis, especially in environmental applications such as dye degradation. Despite its capabilities, TiO₂'s performance can be limited by factors such as charge recombination and limited light absorption, necessitating modifications to improve its efficacy.


Objectives: This study aims to enhance the photocatalytic performance of TiO₂ by creating composites with mango seed powder. We investigate the photocatalytic degradation capabilities of these composites for two common dyes: crystal violet and methyl orange.


Methods: TiO₂ was mixed with mango seed powder in ratios of 1:1 (coded as S-A) and 1:2 (coded as S-B), followed by calcination at 500°C with a ramp of 10°C min⁻¹ under a nitrogen flow. The photocatalytic activities of the composites were evaluated by measuring the degradation of crystal violet (100 mg L⁻¹) and methyl orange (50 mg L⁻¹) under light exposure for 90 minutes.


Results: The photocatalytic tests revealed that both composites efficiently degraded the dyes. Sample S-A achieved decolourization ratios of 83% for crystal violet and 96% for methyl orange, whereas sample S-B showed slightly lower efficiencies with 82% and 87% decolourization for the respective dyes. Additionally, the composites demonstrated superior particle separation from solutions post-photocatalysis compared to pure TiO₂.


Conclusion: Introducing mango seed powder into TiO₂ composites significantly enhanced their photocatalytic performance against both tested dyes. The observed improvement suggests that such composites are promising materials for the heterogeneous photocatalysis of dyes, providing a sustainable approach to wastewater treatment by utilizing agricultural waste products.

Abstract 122 | pdf Downloads 30

References

1. Alshammari, A. (2024). Impact of lignocellulosic biomass-derived graphene-titanium oxide nanocomposite as an electrode for sustainable performance in microbial fuel cell. International Journal of Environmental Science and Technology, 21(5), 5185-5202.
2. Azeroual, S., Khatib, K., Belfkira, A., Ablouh, E.-H., Hanani, Z., Taourirte, M., & Jalal, R. (2024). A novel approach for adsorption of organic dyes from aqueous solutions using a sodium alginate/titanium dioxide nanowire doped with zirconium cryogel beads. Frontiers in Chemistry, 12, 1285230.
3. Bansal, H., Singh, S., Sharma, A., Sundaramurthy, S., & Mehta, S. (2024). Polymer nanocomposite films and coatings for antimicrobial and antifungal applications Polymer Nanocomposite Films and Coatings (pp. 785-815): Elsevier.
4. Bharti, A. S., Baran, C., Bhardwaj, A. K., Tripathi, S., Pandey, R., & Uttam, K. N. (2024). Domestic waste utilization in synthesizing functional nanomaterial Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials (pp. 61-76): Elsevier.
5. Das, D., Verma, K., & Tangjang, S. (2024). A Comprehensive Perspective of Conventional and Biogenic Nanoparticles Biogenic Nanomaterial for Health and Environment (pp. 1-17): CRC Press.
6. Das, S., Bhattacharya, S., & Das, P. (2024). Titanium oxide–coated coconut husk–derived biochar composite and its application to remove crystal violet dye. Biomass Conversion and Biorefinery, 14(4), 5035-5051.
7. de Menezes, F. L. G., de Lima Leite, R. H., Dos Santos, F. K. G., Aria, A. I., & Aroucha, E. M. M. (2024). TiO2 incorporated into a blend of biopolymeric matrices improves film properties and affects the postharvest conservation of papaya fruits under UV light. Food Chemistry, 433, 137387.
8. Din, M. I., Rehman, S., Hussain, Z., & Khalid, R. (2024). Green synthesis of strontium oxide nanoparticles and strontium based nanocomposites prepared by plant extract: a critical review. Reviews in Inorganic Chemistry, 44(1), 91-116.
9. Eswaran, S. G., Stalin, T., Thiruppathi, D., Madhu, M., Santhoshkumar, S., Warchol, J., . . . Vasimalai, N. (2024). One-pot synthesis of carbon dots from neem resin, selective detection of Fe (ii) ions, and photocatalytic degradation of toxic dyes. RSC Sustainability.
10. Flores-Contreras, E. A., González-González, R. B., Pablo Pizaña-Aranda, J. J., Parra-Arroyo, L., Rodríguez-Aguayo, A. A., Iñiguez-Moreno, M., . . . Parra-Saldívar, R. (2024). Agricultural waste is a sustainable source for nanoparticle synthesis, and its antimicrobial properties are helpful for food preservation. Frontiers in Nanotechnology, 6, 1346069.
11. Gupta, R. K., Abd El Gawad, F., Ali, E. A., Karunanithi, S., Yugiani, P., & Srivastav, P. P. Measurement: Food.
12. Jadon, N., Kour, B., Bhat, B. A., & Sharma, H. K. (2024). Green Synthesis Derived Novel Fe2O3/ZnO Nanocomposite for Efficient Photocatalytic Degradation of Methyl Orange Dye. Current Analytical Chemistry, 20(3), 162-174.
13. Kenda, G. T., Fotsop, C. G., Tchuifon, D. R. T., Kouteu, P. A. N., Fanle, T. F., & Anagho, S. G. (2024). Building TiO2-doped magnetic biochars from Citrus Sinensis Peels as low-cost materials for improved dye degradation using a mathematical approach. Applied Surface Science Advances, 19, 100554.
14. Khalid, S., Hassan, S. A., Javaid, H., Zahid, M., Naeem, M., Bhat, Z. F., . . . Aadil, R. M. (2024). Factors responsible for spoilage, drawbacks of conventional packaging, and advanced packaging systems for tomatoes. Journal of Agriculture and Food Research, 100962.
15. Liza, T. Z., Tusher, M. M. H., Anwar, F., Monika, M. F., Amin, K. F., & Asrafuzzaman, F. (2024). Effect of Ag-doping on morphology, structure, band gap, and photocatalytic activity of bio-mediated TiO2 nanoparticles. Results in Materials, 22, 100559.
16. Mahato, R. P., Singh, P., & Srivastava, S. (2024). Prospects and Challenges of Nanofilms-based Edible Food Coatings for Enhancement of Their Shelf Life. The Nanotechnology Driven Agriculture, 204-224.
17. Mazibuko, M. T., Onwubu, S. C., Thabang, M. H., & Mdluli, P. S. (2024). Unlocking Heavy Metal Remediation Potential: A Review of Cellulose-Silica Composites.
18. Meziane, H., Laita, M., Azzaoui, K., Boulouiz, A., Neffa, M., Sabbahi, R., . . . Siaj, M. (2024). Nanocellulose fibres: A review of preparation methods, characterization techniques, and reinforcement applications. Moroccan Journal of Chemistry, 12(1), 12-11 (2024) 2305-2343.
19. Mohamed, S. M. I., Yılmaz, M., Güner, E. K., & El Nemr, A. (2024). Synthesis and characterization of iron oxide-commercial activated carbon nanocomposite to remove hexavalent chromium (Cr6+) ions and Mordant Violet 40 (MV40) dye. Scientific Reports, 14(1), 1241.
20. Murugappan, S., Pebam, M., Sankaranarayanan, S. A., & Rengan, A. K. (2024). Drug‐delivery, Antimicrobial, Anticancerous Applications of Green Synthesized Nanomaterials. Green Synthesis of Nanomaterials: Biological and Environmental Applications, 131-168.
21. Narwal, N., Katyal, D., Malik, A., Kataria, N., Bhardwaj, A. K., Rakib, M. R. J., & Kakakhel, M. A. (2024). Sustainable advances in the synthesis of waste-derived value-added metal nanoparticles and their applications Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials (pp. 17-33): Elsevier.
22. Nian, L., Wang, M., Sun, X., Zeng, Y., Xie, Y., Cheng, S., & Cao, C. (2024). Biodegradable active packaging: Components, preparation, and applications in preserving postharvest perishable fruits and vegetables. Critical Reviews in Food Science and Nutrition, 64(8), 2304-2339.
23. Olowonyo, I. A., Salam, K. K., Aremu, M. O., & Lateef, A. (2024). Synthesis, characterization, and adsorptive performance of titanium dioxide nanoparticles modified groundnut shell activated carbon on ibuprofen removal from pharmaceutical wastewater. Waste Management Bulletin, 1(4), 217-233.
24. Petcu, G., Ciobanu, E. M., Paun, G., Neagu, E., Baran, A., Trica, B., . . . Badaluta, A. (2024). Hybrid Materials Obtained by Immobilization of Biosynthesized Ag Nanoparticles with Antioxidant and Antimicrobial Activity. International Journal of Molecular Sciences, 25(7), 4003.
25. Rahman, A., Daniel, L. S., & Uahengo, V. (2024). Iron Oxide Nanomaterials for Water Purification.
26. Rameez, M., Khan, N., Ahmad, S., & Ahmad, M. M. (2024). Bionanocomposites: A new approach for fungal disease management. Biocatalysis and Agricultural Biotechnology, 103115.
27. Rout, S. S., & Pradhan, K. C. (2024). A review on antimicrobial nano-based edible packaging: Sustainable applications and emerging trends in the food industry. Food Control, 110470.
28. Sah, P. M., Gite, S. G., Sonawane, R., & Raut, R. W. (2024). Biogenic Nanomaterials as a Catalyst for Photocatalytic Dye Degradation Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities (pp. 409-433): Springer.
29. Sani, M. A., Khezerlou, A., Tavassoli, M., Abedini, A. H., & McClements, D. J. (2024). Development of sustainable UV-screening food packaging materials: A review of recent advances. Trends in Food Science & Technology, 104366.
30. Shan, A., Baig, M. M., Kamran, U., Jamal, H., Arif, M. U., Hassan, M., . . . Lee, S. G. (2024). New Y0. 045Ni0. 045Fe2. 91O4 nanowires decorated over mesoporous silica for crystal violet removal: Response surface methodology optimization, kinetics, and isothermal studies. Ceramics International.
31. Siddiqui, S. A., Yang, X., Deshmukh, R. K., Gaikwad, K. K., Bahmid, N. A., & Castro-Muñoz, R. (2024). Recent advances in reinforced bioplastics for food packaging–A critical review. International Journal of Biological Macromolecules, 130399.
32. Suciyati, S. W., Manurung, P., Junaidi, J., & Situmeang, R. Optical and Crystal Structure Properties of ZnO Nanoparticle Synthesized through Biosynthesis Method for Photocatalysis Application. Indonesian Journal of Chemistry.
33. Tabassum, N., Rafique, U., Qayyum, M., Mohammed, A. A., Asif, S., & Bokhari, A. (2024). Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. Journal of Composites Science, 8(1), 29.
34. Taghipour, S., Nia, A. E., Hokmabadi, H., & Yahia, E. M. (2024). Quality evaluation of fresh pistachios (Pistacia vera L.) cultivars coated with chitosan/TiO2 nanocomposite. International Journal of Biological Macromolecules, 258, 129055.
35. Taghizadeh-Lendeh, P., Sarrafi, A. H. M., Alihosseini, A., & Bahri-Laleh, N. (2024). Synthesis and characterization of ZnO/TiO2 incorporated activated carbon as photocatalyst for gas refinery effluent treatment. Polyhedron, 247, 116715.
36. Wahab, A., Muhammad, M., Ullah, S., Abdi, G., Shah, G. M., Zaman, W., & Ayaz, A. (2024). Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Science of The Total Environment, 171862.
37. Zhang, L., Zhang, M., Mujumdar, A. S., & Guo, Z. (2024). Preparation and characterization of TiO2 photocatalyst films and their application for preservation of Agaricus bisporus in combination with blue-violet LEDs. Food Bioscience, 59, 103860.

Most read articles by the same author(s)