RELAXIN: A MULTI-FUNCTIONAL HORMONE

Main Article Content

E. Navya Pravala
Are Anusha
B. Sathvika
Asra Jabeen
Maryam

Keywords

relaxin, cardiac effects, anti-inflammatory, anti- fibrotic, relaxin treatment, serelaxin.

Abstract

Relaxin is a polypeptide hormone produced in the human female by the corpus luteum of pregnancy and the decidua. It’s most well-documented effects are on the menstrual cycle and during pregnancy. It is a key hormone which plays a major role during pregnancy, relaxing muscles, tendons, ligaments, and joints so that the body can handle the effects of a growing fetus. Although relaxin plays a major role during pregnancy, there are many other uses of relaxin. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis. Recent studies suggested that relaxin plays a beneficial role in treating cardiac problems, musculoskeletal problems and acts as anti- fibrotic agent, anti-inflammatory agent.

Abstract 343 | PDF Downloads 103

References

1. Teichman, S.L., Unemori, E., Teerlink, J.R. et al. Relaxin: Review of Biology and Potential Role in Treating Heart Failure. Curr Heart Fail Rep 7, 75–82 (2010).
2. Samuel, C. S., Royce, S. G., Hewitson, T. D., Denton, K. M., Cooney, T. E., and Bennett, R. G. (2017) Anti-fibrotic actions of relaxin. British Journal of Pharmacology, 174: 962– 976.
3. Teichman, S.L., Unemori, E., Dschietzig, T. et al. Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail Rev 14, 321–329 (2009).
4. Samuel CS. Relaxin: antifibrotic properties and effects in models of disease. Clinical medicine & research. 2005 Nov 1;3(4):241-9.
5. Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N. The effect of relaxin on the musculoskeletal system. Scandinavian journal of medicine & science in sports. 2014 Aug;24(4):e220-9.
6. Martin B, Romero G, Salama G. Cardioprotective actions of relaxin. Molecular and Cellular Endocrinology. 2019 May 1;487:45-53.
7. Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochemical Pharmacology. 2022 Mar 1;197:114884.
8. Ng HH, Shen M, Samuel CS, Schlossmann J, Bennett RG. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Molecular and cellular endocrinology. 2019 May 1;487:59-65.
9. Kanai AJ, Konieczko EM, Bennett RG, Samuel CS, Royce SG. Relaxin and fibrosis: Emerging targets, challenges, and future directions. Molecular and cellular endocrinology. 2019 May 1;487:66-74.
10. Doan TN, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction. 2022 Oct 1;164(4):R87-99.
11. Gao XM, Su Y, Moore S, Han LP, Kiriazis H, Lu Q, Zhao WB, Ruze A, Fang BB, Duan MJ, Du XJ. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia–reperfusion. Basic Research in Cardiology. 2019 Jul;114:1-5.
12. Ezhilarasan D. Relaxin in hepatic fibrosis: What is known and where to head?. Biochimie. 2021 Aug 1;187:144-51.
13. Leo CH, Ng HH, Marshall SA, Jelinic M, Rupasinghe T, Qin C, Roessner U, Ritchie RH, Tare M, Parry LJ. Relaxin reduces endothelium‐derived vasoconstriction in hypertension: Revealing new therapeutic insights. British Journal of Pharmacology. 2020 Jan;177(1):217-33.
14. Zhou X, Liu Y, Hu M, Wang M, Liu X, Huang L. Relaxin gene delivery modulates macrophages to resolve cancer fibrosis and synergizes with immune checkpoint blockade therapy. Science Advances. 2021 Feb 17;7(8):eabb6596.
15. Aragón-Herrera A, Couselo-Seijas M, Feijóo-Bandín S, Anido-Varela L, Moraña-Fernández S, Tarazón E, Roselló-Lletí E, Portolés M, Martínez-Sande JL, García-Seara J, Álvarez E. Relaxin-2 plasma levels in atrial fibrillation are linked to inflammation and oxidative stress markers. Scientific Reports. 2022 Dec 24;12(1):22287.
16. Pinar AA, Yuferov A, Gaspari TA, Samuel CS. Relaxin can mediate its anti-fibrotic effects by targeting the myofibroblast NLRP3 inflammasome at the level of caspase-1. Frontiers in Pharmacology. 2020 Aug 4;11:1201.
17. Aragón-Herrera A, Feijóo-Bandín S, Anido-Varela L, Moraña-Fernández S, Roselló-Lletí E, Portolés M, Tarazón E, Gualillo O, González-Juanatey JR, Lago F. Relaxin-2 as a Potential Biomarker in Cardiovascular Diseases. Journal of Personalized Medicine. 2022 Jun 21;12(7):1021.
18. Injamuri S, Rahaman MN, Shen Y, Huang YW. Relaxin enhances bone regeneration with BMP‐2‐loaded hydroxyapatite microspheres. Journal of Biomedical Materials Research Part A. 2020 May;108(5):1231-42.
19. Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. Journal of Medicinal Chemistry. 2022 May 20;65(11):7959-74.
20. Jakubauskiene L, Jakubauskas M, Razanskiene G, Leber B, Weber J, Rohrhofer L, Ramasauskaite D, Strupas K, Stiegler P, Schemmer P. Relaxin and Erythropoietin Significantly Reduce Uterine Tissue Damage during Experimental Ischemia–Reperfusion Injury. International journal of molecular sciences. 2022 Jun 27;23(13):7120.
21. Ko JH, Kang YM, Yang JH, Kim JS, Lee WJ, Kim SH, Yang IH, Moon SH. Regulation of MMP and TIMP expression in synovial fibroblasts from knee osteoarthritis with flexion contracture using adenovirus-mediated relaxin gene therapy. The Knee. 2019 Mar 1;26(2):317-29.
22. Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RA, Denton KM, Kemp‐Harper BK, Samuel CS. The anti‐fibrotic actions of relaxin are mediated through AT2R‐associated protein phosphatases via RXFP1‐AT2R functional crosstalk in human cardiac myofibroblasts. The FASEB Journal. 2020 Jun;34(6):8217-33.
23. Papoutsis K, Kapelouzou A, Georgiopoulos G, Kontogiannis C, Kourek C, Mylonas KS, Patelis N, Cokkinos DV, Karavokyros I, Georgopoulos S. Tissue-specific relaxin-2 is differentially associated with the presence/size of an arterial aneurysm and the severity of atherosclerotic disease in humans. Acta Pharmacologica Sinica. 2020 Jun;41(6):745-52.
24. Yoshino O, Ono Y, Honda M, Hattori K, Sato E, Hiraoka T, Ito M, Kobayashi M, Arai K, Katayama H, Tsuchida H. Relaxin-2 may suppress endometriosis by reducing fibrosis, scar formation, and inflammation. Biomedicines. 2020 Oct 31;8(11):467.
25. Alam F, Gaspari TA, Kemp-Harper BK, Low E, Aw A, Ferens D, Spizzo I, Jefferis AM, Praveen P, Widdop RE, Bathgate RA. The single-chain relaxin mimetic, B7-33, maintains the cardioprotective effects of relaxin and more rapidly reduces left ventricular fibrosis compared to perindopril in an experimental model of cardiomyopathy. Biomedicine & Pharmacotherapy. 2023 Apr 1;160:114370.
26. Kwantwi LB. The dual and multifaceted role of relaxin-2 in cancer. Clinical and Translational Oncology. 2023 Mar 22:1-9.
27. Martins RC, Pintalhão M, Leite-Moreira A, Castro-Chaves P. Relaxin and the cardiovascular system: from basic science to clinical practice. Current Molecular Medicine. 2020 Mar 1;20(3):167-84.
28. Nistri S, Fiorillo C, Becatti M, Bani D. Human Relaxin-2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia–Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up-Regulation. Antioxidants. 2020 Aug 21;9(9):774.
29. Sassoli C, Nistri S, Chellini F, Bani D. Human recombinant relaxin (serelaxin) as anti-fibrotic agent: Pharmacology, limitations and actual perspectives. Current Molecular Medicine. 2022 Mar 1;22(3):196-208.
30. Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. International Journal of Molecular Sciences. 2022 Jun 25;23(13):7074.
31. Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. International journal of molecular sciences. 2022 Apr 15;23(8):4387.
32. Wieczfinska J, Pawliczak R. Relaxin Affects Airway Remodeling Genes Expression through Various Signal Pathways Connected with Transcription Factors. International Journal of Molecular Sciences. 2022 Jul 29;23(15):8413.
33. Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Structure and Function. 2019 Jan 15;224:453-69.
34. Qu X, Chen L, Sun L, Chen C, Gao Z, Huang W, Zhou H. Serum relaxin level predicts recurrence of atrial fibrillation after radiofrequency catheter ablation. Heart and vessels. 2019 Sep 13;34:1543-51.
35. Chunduri P, Patel SA, Levick SP. Relaxin/serelaxin for cardiac dysfunction and heart failure in hypertension. Advances in Pharmacology (San Diego, Calif.). 2022 May 23;94:183-211.
36. Devarakonda T, Mauro AG, Cain C, Das A, Salloum FN. Cardiac gene therapy with relaxin receptor 1 overexpression protects against acute myocardial infarction. Basic to Translational Science. 2022 Jan 1;7(1):53-63.
37. Verdino P, Lee SL, Cooper FN, Cottle SR, Grealish PF, Hu CC, Meyer CM, Lin J, Copeland V, Porter G, Schroeder RL. Development of a Long‐Acting Relaxin Analog, LY3540378, for Treatment of Chronic Heart Failure. British Journal of Pharmacology. 2023 Feb 13.
38. Aragón‐Herrera A, Feijóo‐Bandín S, Moraña‐Fernández S, Anido‐Varela L, Roselló‐Lletí E, Portolés M, Tarazón E, Lage R, Moscoso I, Barral L, Bani D. Relaxin has beneficial effects on liver lipidome and metabolic enzymes. The FASEB Journal. 2021 Jul;35(7):e21737.
39. Liu J, Yang K, Jin Y, Liu Y, Chen Y, Zhang X, Yu S, Song E, Chen S, Zhang J, Jing G. H3 relaxin protects against calcium oxalate crystal‐induced renal inflammatory pyroptosis. Cell Proliferation. 2020 Oct;53(10):e12902.
40. Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. InVitamins and Hormones 2021 Jan 1 (Vol. 115, pp. 419-448). Academic Press.
41. Li Y, Tan G, Liu J, Ke X, Shen Y, Huang J, Hu G, Xiang T, Yang Y. The role of Relaxin-2 in tissue remodeling of chronic rhinosinusitis with nasal polyps. American Journal of Rhinology & Allergy. 2019 Sep;33(5):490-9.
42. Barsha G, Walton SL, Kwok E, Colafella KM, Pinar AA, Krause LM, Gaspari TA, Widdop RE, Samuel CS, Denton KM. Relaxin attenuates organ fibrosis via an angiotensin type 2 receptor mechanism in aged hypertensive female rats. Kidney360. 2021 Nov 11;2(11):1781.
43. Pan LY, Zhang XH, Xia WJ, Pan JL. Relaxin-3 Ameliorates Diabetic Cardiomyopathy by Inhibiting Endoplasmic Reticulum Stress. Computational and Mathematical Methods in Medicine. 2022 Sep 27;2022.
44. Feiteng C, Lei C, Deng L, Chaoliang X, Zijie X, Yi S, Minglei S. Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway. Renal Failure. 2022 Dec 31;44(1):513-24.
45. Aragón-Herrera A, Feijoo-Bandin S, Abella V, Álvarez L, Roselló-Lletí E, Portoles M, Tarazon E, Bigazzi M, Bani D, Gualillo O, González-Juanatey JR. Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacological Research. 2019 Jun 1;144:51-65.
46. DeAdder NP, Gillam HJ, Wilson BC. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: An effect mediated by nitric oxide. FACETS. 2021 Feb 4;6(1):118-30.
47. Ng HH, Soula M, Rivas B, Wilson KJ, Marugan JJ, Agoulnik AI. Anti-apoptotic and Matrix Remodeling Actions of a Small Molecule Agonist of the Human Relaxin Receptor, ML290 in Mice With Unilateral Ureteral Obstruction. Frontiers in Physiology. 2021 Jul 7;12:650769.
48. Xu J, Wan S, Chen W, Zhang Y, Ji Z. Relaxin inhibits 177 Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway. Acta Pharmaceutica. 2022 Dec 31;72(4):575-85.
49. Hong J, Yun CO. Relaxin gene therapy: a promising new treatment option for various diseases with aberrant fibrosis or irregular angiogenesis. Molecular and cellular endocrinology. 2019 May 1;487:80-4.
50. Furuya WI, Dhingra RR, Gundlach AL, Hossain MA, Dutschmann M. Relaxin-3 receptor (RXFP3) activation in the nucleus of the solitary tract modulates respiratory rate and the arterial chemoreceptor reflex in rat. Respiratory Physiology & Neurobiology. 2020 Jan 1;271:103310.
51. Gao L, Liu Y, Wang Y, Chen W, Yang K, Li J, Lv B, Zhang X, Chi J, Liu N, Yin X. H2 relaxin ameliorates angiotensin II-induced endothelial dysfunction through inhibition of excessive mitochondrial fission. Biochemical and biophysical research communications. 2019 May 14;512(4):799-805.
52. Matsumoto K, Jinbo Y, Oda K, Nishijima K. Relaxin improves blood pressure and fetal growth restriction in a murine model of nitric oxide synthase inhibitor-induced hypertensive disorders of pregnancy. Hypertension Research in Pregnancy. 2023 Feb 28;11(1):1-6.
53. Kaftanovskaya E, Ng HH, Soula M, Rivas B, Myhr C, Ho B, Cervantes B, Bishop C, Shupe T, Wilson K, Barnaeva E. Small molecule allosteric agonist of relaxin receptor ML290 demonstrates antifibrotic properties in liver fibrosis. InEndocrine Abstracts 2019 May 1 (Vol. 63). Bioscientifica.
54. Wei Q. Relaxin protects myocardial microvascular endothelial cells from hypoxia-reoxygenation injury. Chinese Journal of Tissue Engineering Research. 2023 Oct 8;27(28):4519.
55. Kojima T, Kawabata S, Takasu C, Terada H, Takahata K, Arakawa K, Kanemura N, Murata K. EFFECTS OF RELAXIN ON MMP-13 EXPRESSION IN CHONDROCYTES AND SYNOVIOCYTES. Osteoarthritis and Cartilage. 2022 Apr 1;30:S182.
56. Devarakonda T, Valle Raleigh J, Mauro AG, Lambert JM, Cowart LA, Salloum FN. Chronic treatment with serelaxin mitigates adverse remodeling in a murine model of ischemic heart failure and modulates bioactive sphingolipid signaling. Scientific Reports. 2022 May 25;12(1):8897.
57. Furuya WI, Dhingra RR, Gundlach AL, Hossain MA, Dutschmann M. Relaxin‐3 receptor (RXFP3) mediated modulation of central respiratory activity. The FASEB Journal. 2020 Apr;34(S1):1.
58. Devarakonda T, Kohlbrenner E, Mauro AG, Cain C, Das A, Hajjar RJ, Salloum FN. Cardiac Gene Therapy With Relaxin Receptor 1 Overexpression Protects Against Acute Myocardial Infarction and Associated Adverse Remodeling. Circulation Research. 2019 Aug 2;125(Suppl_1):A870-.
59. Hubl W. Relaxin. InLexikon der Medizinischen Laboratoriumsdiagnostik 2019 Apr 17 (pp. 2053-2054). Berlin, Heidelberg: Springer Berlin Heidelberg.
60. Akbas M. THE EFFECTS OF RELAXIN ON CARDIOVASCULAR SYSTEM. NOBEL MEDICUS. 2019;15(1).
61. Zhou HF, Ren K, Zhao GJ. Relaxin inhibits macrophage inflammation by repressing NLRP3. International journal of cardiology. 2020 Jan 15;299:254.
62. Zhang H, Luo B, Sun F, Xu B, Li M, Wang G, Yang Z. The anti-fibrotic effects of RLN3 aggravated the pathogenesis of adolescent idiopathic scoliosis-a preliminary study. bioRxiv. 2022:2022-03.
63. Nagórniewicz B, Mardhian DF, Booijink R, Storm G, Prakash J, Bansal R. Engineered Relaxin as theragnostic nanomedicine to diagnose and ameliorate liver cirrhosis. Nanomedicine: Nanotechnology, Biology and Medicine. 2019 Apr 1;17:106-18.

Most read articles by the same author(s)