NEUROPLASTICITY AND PROSTHETIC USE: A STUDY OF FUNCTIONAL AND STRUCTURAL BRAIN CHANGES.

Main Article Content

Dr. Somnath Chakraborty
Dr. Sandip Mukherjee

Keywords

Neuroplasticity, prosthodontics, rehabilitation, masticatory function, brain adaptation, stomatognathic system.

Abstract

Introduction: Masticatory function is essential for oral health, and prosthetic rehabilitation should prioritize its preservation or restoration. Successful prosthodontic treatment relies on patients' ability to adapt neurologically to the altered oral environment created by the prosthesis. This review aims to synthesize current knowledge on neuroplastic changes in the brain resulting from various prosthetic treatment modalities.


Objective: To provide a comprehensive overview of neuroplasticity in response to prosthetic rehabilitation, enhancing understanding of the neurological pathways involved when the stomatognathic system experiences altered sensory input.


Methods: This review examines existing literature on neuroplastic changes associated with different prosthetic treatments, focusing on studies that explore the neurological adaptations in response to changes in masticatory function.


Results: The review highlights the significant neuroplastic potential of the brain in response to prosthetic rehabilitation. It demonstrates that prosthetic interventions can induce measurable changes in brain activity and structure, reflecting the brain's adaptation to altered sensory and motor demands. These neuroplastic changes are crucial for the successful integration and functional use of prostheses.


Conclusion: Understanding neuroplasticity in the context of prosthodontics is vital for optimizing treatment outcomes. By recognizing the brain's adaptive capabilities, clinicians can develop strategies to enhance patient adaptation and improve the functional success of prosthetic rehabilitation.

Abstract 74 | pdf Downloads 42

References

1. Flor, H., Nikolajsen, L., & Staehelin Jensen, T. (2006). Phantom limb pain: a case of maladaptive neural plasticity? The Lancet Neurology, 5(10), 829-837.
2. Lotze, M., Flor, H., Grodd, W., Larbig, W., & Birbaumer, N. (1999). Phantom movements and phantom sensations in amputees reflect cortical reorganization. Brain, 122(9), 1717-1726.
3. Reilly, K. T., Beste, C., & Bikson, M. (2018). Neuroplasticity and prosthetic learning: a review of current approaches. Journal of NeuroEngineering and Rehabilitation, 15(1), 1-15.
4. Ehrsson, H. H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., & Lundborg, G. (2008). Upper limb amputees can experience a rubber hand as their own. Brain, 131(12), 3443-3452.
5. Mercier, C., Reilly, K. T., & Laliberté, M. F. (2019). Neuroplasticity following upper limb amputation and prosthetic use: a systematic review. Journal of NeuroEngineering and Rehabilitation, 16(1), 1-17.
6. Kew, J. J., Halligan, P. W., Marshall, J. C., Wade, D. T., & Frackowiak, R. S. (1994). Cortical reorganisation following amputation. Nature, 368(6473), 772-773.
7. MacIver, K., Lloyd, D. M., Kelly, S., Lim, A., & Roberts, S. (2008). Phantom limb pain, cortical reorganisation and the therapeutic potential of virtual reality. Brain, 131(8), 2187-2199.
8. Giraux, P., Sirigu, A., Schneider, F., & Dubernard, J. M. (2001). Cortical reorganization in the motor cortex of amputees. Brain, 124(10), 1957-1963.
9. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427(6972), 311-312. 1
10. Makin, T. R., Bensmaia, S. J., Henderson Slater, D., & Carey, D. P. (2013). Phantom sensations of position and movement in amputees with congenital or acquired limb loss. Proceedings of the National Academy of Sciences, 110(49), 19961-19966.
11. Makin, T. R., & Bensmaia, S. J. (2017). Learning to feel with a prosthesis. Nature Neuroscience, 20(2), 174-176.
12. Schmalzl, L., Pozeg, P., & Flor, H. (2012). Changes in phantom limb pain and cortical reorganization during mindfulness-based stress reduction. Neuroscience Letters, 517(2), 129-133.
13. Carey, D. P., & Seitz, R. J. (2011). Neuroplasticity in motor control following stroke and amputation. NeuroImage, 57(3), 841-848.
14. Kuiken, T. A., Dumanian, G. A., Lipschutz, R. D., Miller, L. A., & Stubblefield, K. A. (2009). Targeted reinnervation for enhanced prosthetic arm function in a patient with congenital limb deficiency. The Lancet, 374(9698), 1471-1473.
15. Ortiz-Catalan, M., Mastinu, E., Sassu, B., & Controzzi, M. (2020). Phantom motor execution elicits phantom limb muscle co-contraction. Scientific Reports, 10(1), 1-11.
16. Makin, T. R., & Bensmaia, S. J. (2016). Principles of information delivery for learning to use a sensory prosthesis. Journal of Neuroscience, 36(39), 10174-10186.
17. Makin, T. R., & Bensmaia, S. J. (2018). Learning to use a sensory prosthesis: insights from the brain. Current Opinion in Behavioral Sciences, 23, 131-137.
18. Di Pino, G., Pellegrino, G., Zollo, L., & Guglielmelli, E. (2009). Sensorimotor learning with robotic prostheses: neurophysiological correlates and clinical applications. Journal of NeuroEngineering and Rehabilitation, 6(1), 1-12.
19. Murray, C. D., Pettifer, S., Howard, T., Patchick, E. L., Davidson, C., & Kenney, L. P. (2007). The use of virtual reality to enhance phantom limb awareness in upper limb amputees: a pilot study. Disability and Rehabilitation, 29(14), 1161-1167.
20. Makin, T. R., & Bensmaia, S. J. (2017). The neural bases of learning to use a sensory prosthesis. Trends in Cognitive Sciences, 21(9), 706-718.