CONTROL OF ACNE ASSOCIATED MICROBES USING LACTIC ACID BACTERIA ISOLATED FROM COCKROACH GUT
Main Article Content
Keywords
Lactic acid bacteria (LAB), Probiotics, Acne vulgaris, Cockroach, Azithromycin
Abstract
Acne vulgaris, a widespread skin condition that effect almost 9.4% of the global population, primarily emerges in individuals aged fifteen to seventeen, with 15-20% facing moderate to severe manifestations. The conventional approach to treatment, predominantly relies on antibiotics, raises concerns about the development of antibiotic resistance. This research has been focused on lactic acid bacteria (LAB), specifically isolated from cockroach guts, as potential candidates for acne management due to their renowned antimicrobial and anti-inflammatory properties. The morphological traits of bacteria isolated from acne lesions revealed a diverse spectrum of the coexistence of multiple bacterial species. Molecular and Biochemical analyses showed isolation of gram-positive bacteria i.e. Staphylococcus epidermidis strain DSM 1922, Staphylococcus cohnii Strain F, and Streptococcus pyogenes strain mgas 28386 present in the acne lesions of this study. Antibiotic resistance profiling of these bacteria indicated strain-specific susceptibilities. Staphylococcus cohnii Strain F exhibited notable susceptibility to Azithromycin (31mm) and Erythromycin (30mm), while Staphylococcus epidermidis strainDSM 1922 displayed significant resistance. Streptococcus pyogenes strain mgas28386 showed mixed susceptibility, underscoring the importance of understanding strain-specific profiles. This study evaluated the antimicrobial effects of Lactobacillus planetarium strain mgas28386 and Lactobacillus rhamnosus strain 5974 against acne-associated pathogens, revealing strong antibacterial activity of Lactobacillus planetarium strain CE56.8, particularly against S. cohnii Strain F and S. epidermidis strainDSM 1922. Lactobacillus rhamnosus strain 5974 demonstrated moderate efficacy against S. pyogenes strain mgas28386.
References
2. Kumar, S., Sawale, J., Jain, G., Singh, V., Malviya, J., and Yadav, R. (2023). A Review On Acne Vulgaris Is An Usual Dermatological Disorders Which Bothers People In Their Adolescence. Journal of Pharmaceutical Negative Results, 4204-4212.
3. Lee, A. M. (2020). Efficacy of Antibiotic Therapy in Those Diagnosed With Chronic Lower Back Pain, 34-47.
4. Piccolo, D., Kostaki, D., Crisman, G., Piccolo, D., Kostaki, D., and Crisman, G. (2020). Dermoscopy applied to laser and IPL treatments: acne and post-traumatic scars. Quick Guide to Dermoscopy in Laser and IPL Treatments, 85-93.
5. Alqahtani, A., Alsaab, W. I., Altulahi, B., and Altulaihi, B. (2021). Psychological impact of acne vulgaris on the young Saudi population. Cureus, 13(12), 445-654.
6. Grafanaki, K., Bania, A., Kaliatsi, E. G., Vryzaki, E., Vasilopoulos, Y., and Georgiou, S. (2023). The Imprint of Exposome on the Development of Atopic Dermatitis across the Lifespan: A Narrative Review. Journal of clinical medicine, 12(6), 2180.
7. Lynn, D. D., Umari, T., Dunnick, C. A., and Dellavalle, R. P. (2016). The epidemiology of acne vulgaris in late adolescence. Adolescent health, medicine and therapeutics, 13-25.
8. McLaughlin, J., Watterson, S., Layton, A. M., Bjourson, A. J., Barnard, E., and McDowell, A. (2019). Propionibacterium acnes and acne vulgaris: new insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms, 7(5), 128-130.
9. Greydanus, D. E., Azmeh, R., Cabral, M. D., Dickson, C. A., and Patel, D. R. (2021). Acne in the first three decades of life: An update of a disorder with profound implications for all decades of life. Disease-a-Month, 67(4), 101103.
10. Majeed, X. A. (2022). Estimation of serum levels of Copper (Cu), Zinc (Zn) and Selenium in patients with Acne vulgaris, 67-83.
11. WU, H., and SIVAMANI, R. K. (2022). Skin Barrier. Atopic Dermatitis: Inside Out or Outside In-E-Book, 2, 34-56.
12. Charles, B., Jeyaseelan, L., Pandian, A. K., Sam, A. E., Thenmozhi, M., and Jayaseelan, V. (2012). Association between stigma, depression and quality of life of people living with HIV/AIDS (PLHA) in South India–a community based cross sectional study. BMC Public Health, 12(1), 1-11.
13. Bhate, K., and Williams, H. (2014). What's new in acne? An analysis of systematic reviews published in 2011–2012. Clinical and experimental dermatology, 39(3), 273-278.
14. Karadag, A., Aslan Kayıran, M., Wu, C. Y., Chen, W., and Parish, L. (2021). Antibiotic resistance in acne: changes, consequences and concerns. Journal of the European Academy of Dermatology and Venereology, 35(1), 73-78.
15. Harbottle, H., Thakur, S., Zhao, S., and White, D. (2006). Genetics of antimicrobial resistance. Animal biotechnology, 17(2), 111-124.
16. Mendoza, N., Hernandez, P. O., Tyring, S. K., Haitz, K. A., and Motta, A. (2013). Antimicrobial susceptibility of Propionibacterium acnes isolates from acne patients in Colombia. International journal of dermatology, 52(6), 688-692.
17. Ianiro, G., Tilg, H., and Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 65(11), 1906-1915.
18. Ribeiro, C. F. A., Silveira, G. G. d. O. S., Candido, E. d. S., Cardoso, M. H., Espinola Carvalho, C. M., and Franco, O. L. (2020). Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health. ACS Infectious Diseases, 6(10), 2544-2559.
19. Martín, R., and Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology, 10, 1047-1050.
20. Smith, A. B. (2019). The regulation of probiotics in the United States. In Lactic acid bacteria (pp. 693-710). CRC Press.
21. Chilicka, K., Dzieńdziora-Urbińska, I., Szyguła, R., Asanova, B., and Nowicka, D. (2022). Microbiome and probiotics in acne vulgaris—A narrative review. Life, 12(3), 422-490.
22. Aleta, A., Hrvat, F., and Džuho, A. (2020). Probiotics review and future aspects. Int J Innov Sci Res Technol, 5(5): 270-274.
23. Brandi, J., Cheri, S., Manfredi, M., Di Carlo, C., Vita Vanella, V., Federici, F., Bombiero, E., Bazaj, A., Rizzi, E., and Manna, L. (2020). Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Scientific Reports, 10(1), 115-720.
24. Rowan-Nash, A. D., Korry, B. J., Mylonakis, E., and Belenky, P. (2019). Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews, 83(1), e00044-00018.
25. Terreni, M., Taccani, M., and Pregnolato, M. (2021). New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules, 26(9), 2671-2684.
26. Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L., Nair, M. P., and Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487.
27. Monti, M., Redi, C., and Capanna, E. (2022). Genome size evaluations in cockroaches: New entries. European Journal of Histochemistry: EJH, 66(2), 654-688.
28. Siddiqui, R., Elmashak, Y., and Khan, N. A. (2023). Cockroaches: a potential source of novel bioactive molecule (s) for the benefit of human health. Applied entomology and zoology, 58(1), 1-11.
29. Jubeh, B., Breijyeh, Z., and Karaman, R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 2888.
30. Wang, C.-F., Huang, C.-R., and Lu, Y.-C. (2023). Changes in Bio-Functional Compounds, ACE Inhibition, and Antioxidant Capacity after Mixed Fermentation of Eight Whole Grains. Fermentation, 9(3), 209-221.
31. Guo, G., Li, C., Xia, B., Jiang, S., Zhou, S., Men, X., and Ren, Y. (2020). The efficacy of lactic acid bacteria usage in turbot Scophthalmus maximus on intestinal microbiota and expression of the immune related genes. Fish and Shellfish Immunology, 100, 90-97.
32. Hassan, M. A., Abol-Fotouh, D., Omer, A. M., Tamer, T. M., and Abbas, E. (2020). Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. International journal of biological macromolecules, 154, 567-583.
33. Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., and Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infection and drug resistance, 4713-4738.
34. Abi-Ghaida, F. (2022). The serendipitous integration of small boron-embedded molecules into medicinal chemistry. In Fundamentals and Applications of Boron Chemistry (pp. 321-410). Elsevier.
35. Sharma, M. F. (2020). The Development and Application of a Fluorescence Based Activity Assay for Bacterial N 5-Cair Mutase. Wayne State University.
36. Adebisi, Y. A. (2023). Balancing the risks and benefits of antibiotic use in a globalized world: the ethics of antimicrobial resistance. Globalization and Health, 19(1), 27-40.
37. Haque, M. M., Yerex, K., Kelekis-Cholakis, A., and Duan, K. (2022). Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health, 22(1), 1-23.
38. Ibrahim, S. A., Yeboah, P. J., Ayivi, R. D., Eddin, A. S., Wijemanna, N. D., Paidari, S., and Bakhshayesh, R. V. (2023). A review and comparative perspective on health benefits of probiotic and fermented foods. International Journal of Food Science and Technology, 58(10), 4948-4964.
39. Solmi, M., De Toffol, M., Kim, J. Y., Choi, M. J., Stubbs, B., Thompson, T., Firth, J., Miola, A., Croatto, G., and Baggio, F. (2023). Balancing risks and benefits of cannabis use: umbrella review of meta-analyses of randomised controlled trials and observational studies. bmj, 382-397.
40. Nandha, M. C., and Shukla, R. M. (2023). Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Frontiers in Microbiology, 14, 156-211.
41. Dahiya, D., and Nigam, P. S. (2022). Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation, 8(7), 303-315.
42. Roy, S., and Dhaneshwar, S. (2023). Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World Journal of Gastroenterology, 29(14), 2078-2089.
43. Yadav, M., Mandeep, and Shukla, P. (2020). Probiotics of diverse origin and their therapeutic applications: a review. Journal of the American College of Nutrition, 39(5), 469-479.
44. Petruzziello, C., Saviano, A., and Ojetti, V. (2023). Probiotics, the immune response and acute appendicitis: a review. Vaccines, 11(7), 1170-1185.