ENHANCING DROUGHT STRESS TOLERANCE IN MAIZE CROP THROUGH PGPR INOCULATION: ANALYSIS OF MORPHO-PHSIOLOGICAL AND BIOCHEMICAL ATTRIBUTES

Main Article Content

MAHRUKH
IRFANA LALARUKH
Muhammad Shahbaz
Rumana Sadiq
Madiha Ilyas

Keywords

Drought stress, Maize, PGPR inoculation, Antioxidants, Photosynthetic pigments, Gas exchange attributes

Abstract

Water scarcity is primary abiotic components brutally impede the economically important plants growth and yield world widely. Maize is the main cereal crop, ranked second after wheat cultivated for food, feed and bioenergy production purposes. The primary objective of this investigation is to access the impact of drought stress on biochemical, photosynthetic, and gas exchanging attributes of maize crop by plant growth promoting bacteria (PGPR) application. A pot-based investigation was conducted according to factorial CRD (completely randomized design) with 4 repeats. Seeds of five maize varieties were chosen and planted in loamy nutrient rich soil. Experiment was conducted using plant growth promoting rhizobacteria (PGPR) under control (D1) and drought (D2=50% field capacity). The four treatments included, D1P1 (no drought stress+ no PGPR), D1P2 (no drought stress+ PGPR), D2P1 (drought stress+ no PGPR) and D2P2 (drought stress+ PGPR). Results demonstrated that drought stress decreased all studied morpho-physiological characteristics and increased oxidative stress indicators while applying PGPR increased all the attributes such as dry weight of shoot, root, total phenolics, carotenoids, chlorophyll a, chlorophyll b, TSP (total soluble proteins), CAT, SOD and POD, ascorbic acid and gas exchange attributes and lower transpiration rate and play a pivotal role in scavenging ROS under drought stress. PGPR also lowers the lipid peroxidation and membrane degradation by reducing MDA and H2O2 levels in PGPR treated plants. These results suggested that PGPR treated maize varieties performed better under drought stress in comparison to non-treated plants. Among all the cultivars examined, FH-1870 performed best under control and drought stress conditions. In contrast, Sahiwal gold cultivar was more sensitive to water deficit condition but upon PGPR application performed best compared to all other cultivars. Therefore, inoculation of maize seeds with rhizobacteria is an effective strategy against drought stress. However further research is needed to explore rhizobacteria potential in different crops under various abiotic and biotic stresses.

Abstract 82 | pdf Downloads 16

References

1. Abdelaal, K.A.A. 2021a. Effect of Salicylic acid and Abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. J. Plant Prod. 6: 1771-1788.
2. Abdelaal, K.A.A., E.A. El-Shawy, Y.M. Hafez, S.M. Abdel-Dayem, R.C.G. Chidya, H. Saneoka and A.E. Sabagh. 2020b. Nano-Silver and non-traditional compounds mitigate the adverse effects of net blotch disease of barley in correlation with up-regulation of antioxidant enzymes. Pak. J. Bot., 52: 1065-1072.
3. Abdelaal, K.A.A., K.A. Attia, S.F. Alamery, M.M. El-Afry, A.I. Ghazy, D.S. Tantawy, A.A. Al-Doss, E.S.E. El-Shawy, A.M. Abuelsaoud and Y.M. Hafez. 2020a. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability., 12: 1732-1736.
4. Abdelaal, K.A.A., M. Elafry, I. Abdel-Latif, R. Elshamy, M. Hassan and Y. Hafez. 2021b. Pivotal role of yeast and ascorbic acid in improvement the morpho-physiological characters of two wheat cultivars under water deficit stress in calcareous soil. Fresenius. Environ. Bull., 30: 2554-2565.
5. Adewale, S.A., R.O. Akinwale, M. Fakorede and B. Badu-Apraku. 2019. Genetic analysis of drought- adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions. Euphytica, 214: 1-18.
6. Ahmed, K., S. Shahid and N. Nawaz. 2019. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res., 214: 364-374.
7. Akhtar, N., N. Ilyas, R. Hayat, H. Yasmin, A. Noureldeen, and P. Ahmad 2021. Synergis- tic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant. Physiol. Biochem., 166: 160-176.
8. Alkahtani, M.D.F., Y.M. Hafez, K. Attia, E. Rashwan, L.A. Husnain, H.I.M. Algwaiz and K.A. Abdelaal. 2021. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants.,10: 386-398.
9. Al-Turki, A., M. Murali, A.F. Omar, M. Rehan, and R.Z. Sayyed. 2023. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front. Microbiol., 14: 121-132.
10. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
11. Asghari, B., R. Khademian and B. Sedaghati. 2020. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci. Horticul., 263: 109124-109132.
12. Asrar, A.W.A. and K.M. Elhindi. 2020. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 18: 93-101.
13. Azeem, M.A., F.H. Shah, A. Ullah, K. Ali, D.A. Jones, M.E.H. Khan, and A. Ashraf. 2022. Biochemical characterization of halotolerant Bacillus safensis pm22 and its potential to enhance growth of maize under salinity stress. Plants, 11: 1721-1735.
14. Bouremani, N., H. Cherif-Silini, A. Silini, A.C. Bouket, L. Luptakova, F.N. Alenezi, O. Baranov and Bel-bahri. 2023. Plant growth-promoting rhizobacteria (PGPR): A rampart against the adverse effects of drought stress. Water, 15: 401-418.
15. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2): 248-254.
16. Carmak, I. and W.J. Horst. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant., 83(3): 463-478.
17. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol., 2: 764-775.
18. Chaturvedi, S., S. Khan, R.K. Bhunia, K. Kaur and S. Tiwari. 2022. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. Physiol. Mol. Biol. Plants. 28: 871-884.
19. Chieb, M. and E.W. Gachomo. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC plant biol., 23: 395-407.
20. Choukri, H., K. Hejjaoui, A. El-Baouchi, N.E. Haddad, A. Smouni, F. Maalouf, D. Thavarajah and S. Kumar. 2020. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Front. nutr.,7: 596298-596307.
21. Djalovic, I., S. Kundu, R.N. Bahuguna, A. Pareek, A. Raza, S.L. Singla-Pareek, P.V.V. Prasad and R.K. Varshney. 2023. Maize and heat stress: Physiological, genetic, and molecular insights. Plant Gen., 14: e20378.
22. Ebrahem, M.E., A.T. Mostafa, H.E.E. Mohamed, E.M. Hanan, P.K. Osman, A. Bashir, S.A. Fayssal, Z. Andabaka, G. Madhumita, S. Kumari and A. Bachheti. 2022. Combined use of spent mushroom substrate biochar and PGPR improves growth, yield, and biochemical response of cauliflower (Brassica oleracea var. botrytis): a preliminary study on greenhouse cultivation. Horticulturae., 8: 815-830.
23. Faisal, S., S.M. Mujtaba, M.A. Khan and W.A.J.I.D. Mahboob. 2019. Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pak. J. Bot., 49: 445-452.
24. Fao 2021. The impact of disasters and crises on agriculture and food fecurity. Rome: Food and agriculture organization of the United Nations.
25. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita and S.M.A. Basra. 2019. Plant drought stress, Effects, mechanisms and management. Agron. Sustain. Dev., 29: 185-212.
26. Gaafar, A.A., S.I. Ali, M. Shawadfy, Z.A. Salama, A. Sekara, C. Ulrichs and M.T. Abdelhamid. 2020. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth and productivity of the common bean under water stress conditions. Plants, 9: 615-627.
27. Gashash, E.A., N.A. Osman, A.A. Alsahli, H.M. Hewait, A.E. Ashmawi, K.S. Alshallash, A.M. El- Taher, E.S. Azab, El-Raouf and M.F. Ibrahim. 2022. Effects of plant-growth-promoting rhizobacteria (PGPR) and cyanobacteria on botanical characteristics of tomato (Solanum lycopersicon L.) plants. Plants., 11: 2722-2732.
28. Gharibi, S., B.E.S. Tabatabaei, G. Saeidi, and S.A.H. Goli. 2019. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl. Biochem. Biotechnol., 178: 796-809.
29. Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water soluble protein in seedlings. Plant physiol., 59: 315-318.
30. Gill, S.S. and N. Tuteja 2019. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem., 48: 909-930.
31. Gowtham, H.G., S. Singh, M. Murali, N. Shilpa, M. Prasad and M. Aiyaz. 2020. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol. Res., 234: 126417-126428.
32. Gowtham, H.G., S.B. Singh, N. Shilpa, M. Aiyaz, K. Nataraj, A.C. Udayashankar, K.N. Amruthesh, M. Murali, P. Poczai, A. Gafur and W.H. Almalki. 2022. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidant., 11: 1752-1763.
33. Hafez, Y.M., K.A. Attia, S. Alamery, A. Ghazy, A. Al- Dosse, E. Ibrahim, E. Rashwan, L. El-Maghraby, A. Awad and K.A. Abdelaal. 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy., 19: 610-630.
34. Hafez, Y.M., K.A.A. Abdelaal, M.E. Eid and F.F. Mchiar. 2016. Morpho-physiological and Biochemical Responses of Barley Plants (Hordeum vulgare L.) against Barley net Blotch disease with Application of non-traditional compounds and fungicides. Egypt. J. Biol. Pest Control., 26: 261-268.
35. Hatami, M. 2019. Phenolic compounds in plants: A review on their roles in stress tolerance. J. Plant Stress Physiol. 5: 1-15.
36. He, W., K. Yan, Y. Zhang, L. Bian, H. Mei and G. Han. 2021. Contrasting photosynthesis, photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-osmotic salt and drought stresses. Environ. Exp. Bot., 32: 182-182.
37. Ilyas, M., S.A. Khan, S.I. Awan, S. Rehman, W. Ahmed and M.R. Khan. 2020. Preponderant of dominant gene action in maize revealed by generation mean analysis under natural and drought stress conditions. Sarhad J. Agri., 36: 198-209.
38. Islam, F., Yasmeen, T., Ali, Q., Ali, S., Arif, M.S., Hussain, S. and Rizvi, H., 2019. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf., 104: 285-293.
39. Jamro, S., G.H. Dars, K. Ansari and N.Y. Krakauer. 2019. Spatio-temporal variability of drought in Pakistan using standardized precipitation evapo-transpiration index. Appl. Sci., 9: 4576-4588.
40. Jan, S., B. Singh, R. Bhardwaj, D. Kapoor, J. Kour, R. Singh, P. Alam, A. Noureldeen and H. Darwish. 2022. Application of melatonin and PGPR alleviates thiamethoxam induced toxicity by regulating the TCA cycle in Brassica juncea L. Saudi J. Biol. Sci., 29: 1348-1354.
41. Julkenen-Titto, R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric. Food Chem., 33: 213-217.
42. Julkunen-Titto, R. 1985. Phenolics constituents in the leaves of northern willo methods for the analysis of certain phenolics. Journal of Agriculture and Food Chemistry., 33: 213-217.
43. Kálmán, C.D., Z. Nagy, A. Berényi, E. Kiss and K. Posta. 2024. Investigating PGPR bacteria for their competence to protect hybrid maize from the factor drought stress. Cereal Res. Commun., 52: 129-150.
44. Khan, M.I. and S. Gupta. 2020a. Drought stress in wheat: Physiological and biochemical responses. J. Plant Physiol., 248: 109916-109926.
45. Khan, N., A.M. Bano and A. Babar. 2020b. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE., 18: 234-249.
46. Kiani, S.P., P. Maury, A. Sarrafi and P. Grieu. 2019. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant sci, 175: 565-573.
47. Kumar, A., V.K. Singh, V. Tripathi, P.P. Singh and A.K. Singh. 2019. Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress. In Crop Improvement through Microbial Biotechnology. Elsevier, 2018; 45: 333-342.
48. Lalarukh, I. and M. Shahbaz. 2020. Impact of alpha- tocopherol seed priming on accumulation of osmolytes and ion homeostasis in sunflower (Helianthus annuus) under salt stress. Int. J. Agric. Biol., 24: 1672-1680.
49. Li, Y., X. Liu, Q. Li, Y. Guo, Y. Zhang, C. Wang, Q. Zhou and Z. Wu. 2023. PGPR promotes the recovery of submerged macrophytes via indigenous microbiome modulations under combined abiotic stress. Water, 15: 581-590.
50. Liang, L.M.H., J. Zhu and J.G. Jiang. 2019. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit. Rev. Food Sci. Nutr., 13: 1-20.
51. Marchin, R.M., A. Ossola, M.R. Leishman and D.S. Ellsworth. 2020. A simple method for simulating drought effects on plants. Front. Plant Sci., 10: 1709-1715.
52. Mukherjee, S.P. and M.A. Choudhari. 1983. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant., 58: 116-170.
53. Nautiyal, C.S., R. Govindarajan, M. Lavania and P. Pushpangadan. 2019. Novel mechanisms of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J. Agric. Food Chem., 56: 4474-4481.
54. Pequeno, D.N., I.M. Hernandez-Ochoa, M. Reynolds, K. Sonder, A. Moleromilan, R.D. Robertson, M.S. Lopes, W. Xiong, M. Kropff and S. Asseng. 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ. Res. Lett., 67: 54070-54070.
55. Qaseem, M.F., R. Qureshi and H. Shaheen. 2019. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep., 9: 6945-6955.
56. Rajput, V.D., R.K. Harish, Singh, K.K. Verma, L. Sharma, F.R. Quiroz-Figueroa, M.Meena, V.S. Gour, T. Minkina, S. Sushkova, and S. Mandzhieva, 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology., 10: 258-267.
57. Rashwan, E., A.S. Alsohim, A. El-Gammaal, Y. Hafez and K.A.A. Abdelaal. 2020. Foliar application of nano zinc oxide can alleviate the harmful effects of water deficit on some flax cultivars under drought conditions. Fresenius Environ. Bull., 29: 8889-8904.
58. Sabagh, A.E., A. Hossain, C. Barutçular, A.A. Abde-laal, S. Fahad, F.B. Anjorin, M.S. Islam, D. Rat- nasekera, F. Kizilgeçi and S. Yadav. 2019. Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. J. Exp. Biol. Agric. Sci., 6: 282-295.
59. Salam, U., S. Ullah, Z.H. Tang, A.A. Elateeq, Y. Khan, J. Khan, A. Khan and S. Ali. 2023. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life., 13: 706-706.
60. Sharma, H., A. Kumari, O.P. Raigar, G. Augustine, V. Verma, C. Lakhar, A.K. Boparai, H. Aggarwal, A. Kumar, and A.K. Srivastava. 2023. Strategies for improving tolerance to the combined effect of drought and salinity stress in crop in salinity and drought tolerance in plants. Physiol. Persp., 54: 137-172.
61. Siddique, S., M. Naveed, M. Yaseen and M. Shahbaz. 2022. Exploring potential of seed endophytic bacteria for enhancing drought stress resilience in maize (Zea mays L.). Sustainability, 14: 667-673.
62. Siddiqui, M.H., M.Y. Al-Khaishany, M.A. Al-Qutami, M.H. Al-Whaibi, A.M. Grover, H. Ali, M.S. Al- Wahibi and N.A. Bukhari. 2019. Response of different genotypes of faba bean plant to drought stress. Int. J. Mol. Sci., 16: 10214-10227.
63. Tahkokorpi, M., K. Taulavuori, K. Laine and E. Taulavuori. 2007. After effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ. Exp. Bot., 61:85-93.
64. Tayyab, N., R. Naz, H. Yasmin, A. Nosheen, R. Keyani,M. Sajjad, M.N. Hassan and T.H. Roberts. 2020. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought induced stress in maize. PLoS One., 202: 232258-232269.
65. Urmi, T.A., M.M. Islam, K.N. Zumur, M.A. Abe-din, M.M. Haque, M.H. Siddiqui, Y. Murata and M.A. Hoque. 2023. Combined effect of salicylic acid and proline mitigates drought stress in rice (Oryza sativa L.) through the modulation of physiological attributes and antioxidant enzymes. Antioxidants., 12: 1427-1438.
66. Velikova, V., I. Yordanov and A. Adreva. 2000. Some antioxidant systems in acid rain treated bean plants; protective role of exogenous polyamines. Plant. Sci., 151: 59-66.
67. Xiong, Y.W., X.W. Li, and T.T. Wang. 2020. Root exudates driven rhizosphere recruitment of the plant growth- promoting rhizobacterium Bacillus fexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol. Environ. Saf., 194: 110365-110374.
68. Zhang, M., L. Yang, R. Hao, X. Bai, Y. Wang and X. Yu. 2020. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil., 452: 423-440.
69. Zhang, Y. and Y. Tang. 2020. Drought stress and nitrogen addition alter photosynthetic and growth traits in a temperate grassland. J. Ecol., 107: 1450-1461.

Most read articles by the same author(s)