MORPHOLOGICAL EFFECTS ON IN-VITRO EVALUATION OF ANTIBACTERIAL ACTIVITY OF MONODISPERSED FINE PARTICLES OF COBALT OXIDE AGAINST VARIOUS BACTERIAL STRAINS

Main Article Content

Naila Zubair
Faiza Nawaz
Sobia Wali Muhammad
Aamna Shahzadi
Muhammad Zohaib
Muhammad Abbas
Fawad Ali

Keywords

Cobalt oxide, morphological effects, monodispersed, antibacterial activity, zone of inhibition

Abstract

Microspheres and nanorods shaped tricobalt tetraoxide (Co3O4) fine particles were synthesized using a controlled precipitation method. The precipitation of cobalt acetate and oxalic acid were carried out in ultra-sonic water bath for various duration of time i.e., 20-90°C which caused the formation of cobalt oxalate precipitates. The precursor of Co3O4 was then calcined in furnace at 400°C which resulted in the formation of fine particles of Co3O4. The effect of reaction time and temperature on particle morphology was studied. The synthesized product was then employed to XRD, SEM and FT-IR analysis. All the employed characterization techniques confirmed the composition, purity, morphology and crystalline nature of the synthesized product. Furthermore, the samples were evaluated for their antibacterial activity using well diffusion method. For this purpose, the antibacterial activity of two selected samples of Co3O4 and a commercial Co3O4 were evaluated and compared with positive control (ciprofloxacin). The antibacterial study revealed that synthesized Co3O4 fine particles possess the potential of an excellent alternative for conventional antibiotics.

Abstract 135 | Pdf Downloads 27

References

1. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials : History , Sources , Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9 1050–1074.
2. Yuanchun, Q.; Yanbao, Z.; Zhishen, W,; Preparation f cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterizatio. Mater.chem.phy. 2008, 110, 457–462.
3. Sirelkhatim, A.; Mahmud, S.; Seeni, A. Review on Zinc Oxide Nanoparticles : Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242.
4. Nano, A. C. S.; Feynman, A.; Taniguchi, N.; Faraday, M.; Mie, G. Nanoscience vs Nanotechnology ; Acsnano.org. 2015, 9, 2215–2217.
5. Bokov, D.; Jalil, A. T.; Chupradit, S.; Suksatan, W.; Ansari, M. J.; Shewael, I. H.; Valiev, G. H.; Kianfar, E. Nanomaterial by Sol-Gel Method : Synthesis and Application. Adv.mater.scicenc.Technol. 2021, 1–21.
6. Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Green Chemistry Letters and Reviews Detail Review on Chemical , Physical and Green Synthesis , Classification , Characterizations and Applications of Nanoparticles. Green.Chem.lett.rev. 2020, 13, 223–225.
7. Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of Nanoparticles by Laser Ablation : A RevieW. Kona. Powder.Part. J. 2016, 3, 1–11.
8. Busi, S.; Rajkumari, J. Chapter 15. Microbially Synthesized Nanoparticles as next Generation Antimicrobials: Scope and Applications; Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-816504-1.00008-9.
9. Jamkhande, P. G.; Ghule, N. W.; Bamer, A. H.; Kalaskar, M. G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol .2019, 101174.
10. Azam, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria : A Comparative Study. Itnter.J.Nanomed, 2012, 7, 6003–6009.
11. Wang, L.; Hu, C. The Antimicrobial Activity of Nanoparticles : Present Situation and Prospects for the Future. 2017, 1227–1249.
12. Kammakakam, I. As Featured in : Materials Advances. Mater.rep.express. 2021,9, 1–10.
13. Mubraiz, N.; Bano, A.; Mahmood, T.; Khan, N. Microbial and Plant Assisted Synthesis of Cobalt Oxide Nanoparticles and Their Antimicrobial Activities. Agronomy.2021, No. 3, 1–20.
14. Moradpoor, H.; Safaei, M.; Rezaei, F.; Golshah, A.; Jamshidy, L.; Hatam, R.; Rawand, S. Optimisation of Cobalt Oxide Nanoparticles Synthesis as Bactericidal Agents. J.medic.sci. 2019, 7 (17), 2757–2762.
15. Yaqoob, A. A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications : A Review.,Front.chem 2020 8 (May), 1–23.
16. Huang, Y.; Wu, C.; Aronstam, R. S. Toxicity of Transition Metal Oxide Nanoparticles: Rece(nt Insights from in Vitro Studies.. Materials, 2010, 3 4842–4859.
17. Sardjono, S. A.; Puspitasari, P. Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Sol-Gel Method Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Sol-Gel Method. Inter.conf.life sci.technol. 2020, 040046.
18. Liu, F.; Su, H.; Jin, L.; Zhang, H.; Chu, X.; Yang, W. Facile Synthesis of Ultrafine Cobalt Oxide Nanoparticles for High-Performance Supercapacitors. J. Colloid Interface Sci. 2017. https://doi.org/10.1016/j.jcis.2017.06.058.
19. Gatoo, M. A.; Naseem, S.; Arfat, M. Y.; Dar, A. M.; Qasim, K.; Zubair, S. Physicochemical Properties of Nanomaterials : Implication in Associated Toxic Manifestations. Biomed. resea. inter. 2014, 5, 3–9.
20. Babayevska, N.; Przysiecka, Ł.; Iatsunskyi, I.; Nowaczyk, G. ZnO Size and Shape Effect on Antibacterial Activity and Cytotoxicity Profile. Sci. Rep.2022, No. 0123456789, 1–13.
21. Lakra, R.; Kumar, R.; Nath, D.; Kumar, P.; Soam, A. Materials Today : Proceedings Synthesis and Characterization of Cobalt Oxide ( Co3O4 ) Nanoparticles. Mater. Today Proc.2020, No. xxxx, 3–5.
22. Ramzan, M.; Ashraf, S. Synthesis of Co3O4 Nano Aggregates by Co-Precipitation Method and Its Catalytic and Fuel Additive Applications. 2019, 865–873.
23. Sardjono, S. A.; Puspitasari, P. Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Sol-Gel Method, Inter.conf.life sci.technol. 2020. 040046, 1–5.
24. Yang, H.; Hu, Y.; Zhang, X.; Qiu, G. Mechanochemical Synthesis of Cobalt Oxide Nanoparticles. Mater.lett. 2004, 58, 387–389.
25. Luisetto, I.; Pepe, Æ. F.; Bemporad, Æ. E. Preparation and Characterization of Nano Cobalt Oxide. J.Nanopart.resp. 2008, 10, 59–67.
26. Tollosa, A.; deressa, G ; Gonsa, B; Synthesis of Cobalt Oxide Nanoparticles Through Chemical and Biological Pathways for Antibacterial Activity. J. nanostruc. 2021. 11 (2), 577–587.
27. Al-fakeh, M. S. Synthesis, Characterization, and Antimicrobial Activity of CoO Nanoparticles from a Co ( II ) Complex Derived from Polyvinyl Alcohol and Aminobenzoic Acid Derivative. Scien. worl. J , 2021, 2, 1–11.
28. Athar, T.; Hakeem, A.; Topnani, N.; Hashmi, A. Wet Synthesis of Monodisperse Cobalt Oxide Nanoparticles. ISRN.mater.sci. 2012, 6, 1-6.
29. Pal, J.; Chauhan, P. Study of Physical Properties of Cobalt Oxide ( Co3O4) Nanocrystals. Mater. Charact. 2010, 61 (5), 575–579.
30. Bhargava, R.; Khan, S.; Ahmad, N.; Mohsin, M.; Ansari, N. Investigation of Structural , Optical and Electrical Properties of Co3O4 Nanoparticles. Inter. Conf .Condensed Matter Applied Phys. 2018, 030034, 1–5.
31. Das, D.; Jyoti, B. Synthesis, Characterization and Biological Applications of Cobalt Oxide (Co3O4 ) Nanoparticles. Chem.phys.impac, eles. 2023, 6 ,4–6.
32. Raza, M. A.; Kanwal, Z.; Riaz, S.; Naseem, S. Synthesis, Characterization and Antibacterial Properties of Nano-Sized Cobalt Particles. ACEM. 2016. 3,3–6.
33. Khan, S.; Ansari, A. A.; Arif, A.; Rehan, K.; Al, O.; Wael, O.; Kattan, A. In Vitro Evaluation of Anticancer and Antibacterial Activities of Cobalt Oxide Nanoparticles. Inter.J. nanomed. 2015, 15 ,1319–1326.
34. Saeed, S. Y.; Mazhar, K.; Raees, L.; Mukhtiar, A.; Khan, F.; Khan, M. Green Synthesis of Cobalt Oxide Nanoparticles Using Roots Extract of Ziziphus Oxyphylla Edgew Its Characterization and Antibacterial Activity, Mater .Resp.express, 2022, 9, 6-10.
35. Deekala, V; Kowthalam, A.; Raju, R. Pharmaceutical science, cobalt oxide Nanoparticles: synthesis and characterization, Indo. Am. J. P. Sci, 2021, 8, 22–28.
36. Ajarem, J. S.; Maodaa, S. N.; Allam, A. A.; Taher, M. M.; Khalaf, M. Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract : Antioxidant, Antimicrobial, Anticancer and Anticoagulant Activity, J. Clust. Sci. 2022, 33, 717–728.
37. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 2019, 12, 908–931.
38. Omran, B. A.; Nassar, H. N.; Younis, S. A.; El-salamony, R. A.; Fatthallah, N. A.; El-shatoury, E. H.; El-Gendy, Sh, N. J. Appl. Microbiol. 2020, 128, 438–457.
39. Hafeez, M.; Shaheen, R.; Akram, B.; Haq, S.; Mahsud, S. Green Synthesis of Cobalt Oxide Nanoparticles for Potential Biological Applications Mater. reserc. Express. 2020, 7, 2–9.
40. Nagajothi, D. Biosynthesis and Characterization of Co3O4 NPs Utilizing Prickly Pear Fruit Extract and Its Biological Activities. JOTCSA, 2022, 9, 1117–1128.
41. Bekele, E. T.; Murthy, H. C. A.; Muniswamy, D.; Lemenh, Y. A.; Shume, M. S.; Ayanie, G. T.; Kumar, A. P.; Ravikumar, C. R.; Balachandran, R.; Roy, A. Solanum Tuberosum Leaf Extract Templated Synthesis of Co3O4 Nanoparticles for Electrochemical Sensor and Antibacterial Applications. Bioinorg. chem, App, 2022, 2022,1–15.
42. Arsalan, N.; Kashi, E. H.; Hasan, A.; Doost, M. E.; Rasti, B.; Paray, B. A.; Nakhjiri, M. Z.; Sari, S.; Shahpasand, K.; Akhtari, K.; Haghighat, S. Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin , Leukemia Cancer Cells and Pathogenic Bacteria by Multispectroscopic, Docking, Cellular and Antibacterial Approaches, Inter. J. Naomed. 2023, 15, 4607–4623
43. Anele, A.; Obare, S.; Wei, J. Recent Trends and Advances of Co3O4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. Nanomaterial, 2022, 12, https://doi.org/10.2147/IJN.S257711.27.

Most read articles by the same author(s)