Main Article Content

Dr. Rajesh Singh
Dr. Amrita Chauhan
Dr.Deepak Gawali
Dr.Ashish Saraswat


Depression, Gut flora, mental health, Cognitive function.


Introduction:-  The central and the enteric nervous system, linking emotional and cognitive centers of the brain with peripheral intestinal functions basically its an bidirectional syatem. The interaction between microbiota and GBA appears to be bidirectional, namely through signaling from gut-microbiota to brain and from brain to gut-microbiota by means of neural, endocrine, immune, and humoral links. Studies showed that distension of the gut resulted in activation of key pathways within the brain and that such pathways are exaggerated in disorders such as irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder with dysregulated microbiota-gut-brain axis

 Material And Methods:-Patients attending OPD clinic in   Psychiatry Department  with. Depression ,e ither male or female of Age group -more than 10 years to 70 years of age. Around 100 such patients observed followed by Questionnaire based survey from January  2022 to April  2022.

 Conclusion:- The deteriorating mental health has become a global health issue and has had a major impact on day to day life of the people. Gut flora  is disturbed due to ill food habits of people. Understanding and addressing the mental health issues of patients and general public is important in terms of their efficiency and adaptability towards poor mental health and this is also noteworthy to identify role of probiotics towards promotion of positive mental health.

Abstract 143 | pdf Downloads 103


1. World Health Organization. Available online: (accessed on 5 July 2022).
2. Gulas, E.; Wysiadecki, G.; Strzelecki, D.; Gawlik-Kotelnicka, O.; Polguj, M. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatr. Pol. 2018, 6, 1023–1039. (In Polish) [CrossRef].
3. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [CrossRef] [PubMed]
4. Chilicka, K.; Dzie´ ndziora-Urbi ´ nska, I.; Szyguła, R.; Asanova, B.; Nowicka, D. Microbiome and probiotics in acne vulgaris—A narrative review. Life 2022, 12, 422. [CrossRef] [PubMed]
5. Nowicka, D.; Chilicka, K.; Dzie´ ndziora-Urbi ´ nska, I. Host-microbe interaction on the skin and its role in the pathogenesis and treatment of atopic dermatitis. Pathogens 2022, 11, 71. [CrossRef]
6. Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome—A potential controller of wellness and disease. Front. Microbiol. 2018, 9, 1835[CrossRef]
7. Singh, R.; Zogg, H.; Wei, L.; Bartlett, A.; Ghoshal, U.C.; Rajender, S.; Ro, S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J. Neurogastroenterol. Motil. 2021, 27, 19–34. [CrossRef]
8. Dinan, T.G.; Cryan, J.F. Brain-gut-microbiota axis and mental health. Psychosom. Med. 2017, 79, 920–926. [CrossRef] [PubMed]Int. J. Mol. Sci. 2022, 23, 11245 17 of 23
9. Latalova, K.; Hajda, M.; Prasko, J. Can gut microbes play a role in mental disorders and their treatment? Psychiatr. Danub. 2017,29, 28–30. [CrossRef]
10. Daniel, H. Diet and the gut microbiome: From hype to hypothesis. Br. J. Nutr. 2020, 124, 521–530. [CrossRef]
11. Vemuri, R.; Shankar, E.M.; Chieppa, M.; Eri, R.; Kavanagh, K. Beyond just bacteria: Functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 2020, 8, 483. [CrossRef] [PubMed]
12. Parker, A.; Lawson, M.A.E.; Vaux, L.; Pin, C. Host-microbe interaction in the gastrointestinal tract. Environ. Microbiol. 2018, 20, 2337–2353. [CrossRef] [PubMed]
13. Bures, J.; Cyrany, J.; Kohoutova, D.; Förstl, M.; Rejchrt, S.; Kvetina, J.; Vorisek, V.; Kopacova, M. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 2010, 16, 2978–2990. [CrossRef]
14. Dukowicz, A.C.; Lacy, B.E.; Levine, G.M. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol. Hepatol. 2007, 3, 112–122.
15. Fond, G.; Boukouaci, W.; Chevalier, G.; Regnault, A.; Eberl, G.; Hamdani, N.; Dickerson, F.; Macgregor, A.; Boyer, L.;Dargel, A.; et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol. Biol. 2015, 63, 35–42. [CrossRef]
16. Valdes, A.M.;Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [CrossRef] [PubMed]
17. Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020, 11, 25. [CrossRef] [PubMed]
18. Pituch, A.;Walkowiak, J.; Banaszkiewicz, A. Butyric acid in functional constipation. Prz. Gastroenterol. 2013, 8, 295–298. [CrossRef][PubMed]
19. Claus, S.P.; Guillou, H.; Ellero-Simatos, S. Erratum: The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2017, 3, 17001. [CrossRef]
20. Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol.2017, 11, 821–834. [CrossRef]
21. Lazar, V.; Ditu, L.-M.; Pircalabioru, G.G.; Gheorghe, I.; Curutiu, C.; Holban, A.M.; Picu, A.; Petcu, L.; Chifiriuc, M.C. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018,9, 1830. [CrossRef] [PubMed]
22. Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.Pantanella, F.; et al. Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiol. 2016, 39, 1–12.
23. McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 2022, 27, 1920–1935. [CrossRef] [PubMed]
24. Colombo, A.V.; Sadler, R.K.; Llovera, G.; Singh, V.; Roth, S.; Heindl, S.; Monasor, L.S.; Verhoeven, A.; Peters, F.; Parhizkar, S.; et al.Microbiota-derived short chain fatty acids modulate microglia and promote A_ plaque deposition. eLife 2021, 10, e59826.[CrossRef]
25. Mirzaei, R.; Bouzari, B.; Hosseini-Fard, S.R.; Mazaheri, M.; Ahmadyousefi, Y.; Abdi, M.; Jalalifar, S.; Karimitabar, Z.; Teimoori, A.;Keyvani, H.; et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother. 2021,139, 111661. [CrossRef]
26. Mack, I.; Schwille-Kiuntke, J.; Mazurak, N.; Niesler, B.; Zimmermann, K.; Mönnikes, H.; Enck, P. A Nonviable probiotic in irritable bowel syndrome: A randomized, double-blind, placebo-controlled, multicenter study. Clin. Gastroenterol. Hepatol. 2022,20, 1039–1047.e9. [CrossRef]
27. Puricelli, C.; Rolla, R.; Gigliotti, L.; Boggio, E.; Beltrami, E.; Dianzani, U.; Keller, R. The gut-brain-immune axis in autism spectrum disorders: A state-of-art report. Front. Psychiatry 2022, 12, 755171. [CrossRef]
28. Cryan, J.; Dinan, T. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [CrossRef]
29. Collins, S.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [CrossRef]
30. Mitrea, L.; Neme¸s, S.A.; Szabo, K.; Teleky, B.E.; Vodnar, D.C. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Front. Med. 2022, 9, 813204. [CrossRef]
31. Singh, R.; Stogios, N.; Smith, E.; Lee, J.; Maksyutynsk, K.; Au, E.;Wright, D.C.; de Palma, G.; Graff-Guerrero, A.; Gerretsen, P.; et al.Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: A scoping review. Ther. Adv. Psychopharmacol.2022, 12, 20451253221096525. [CrossRef]
32. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [CrossRef]
33. Nagpal, R.; Mainali, R.; Ahmadi, S.;Wang, S.; Singh, R.; Kavanagh, K.; Kitzman, D.W.; Kushugulova, A.; Marotta, F.; Yadav, H.Gut microbiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging 2018, 4, 267–285. [CrossRef]
34. Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol. 2019, 10, 1124. [CrossRef] Int. J. Mol. Sci. 2022, 23, 11245 18 of 23
35. Walker, R.W.; Clemente, J.C.; Peter, I.; Loos, R. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr. Obes. 2017, 12 (Suppl. 1), 3–17. [CrossRef]
36. Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows:Implications for brain disorders. Trends Mol. Med. 2014, 20, 509–518. [CrossRef]
37. Collado, M.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [CrossRef]
38. Linehan, K.; Dempsey, E.M.; Ryan, C.A.; Ross, R.P.; Stanton, C. First encounters of the microbial kind: Perinatal factors direct infant gut microbiome establishment. Microbiome Res. Rep. 2022, 1, 10. [CrossRef]
39. Yao, Y.; Cai, X.; Ye, Y.;Wang, F.; Chen, F.; Zheng, C. The Role of Microbiota in infant health: From early life to adulthood. Front.Immunol. 2021, 12, 708472. [CrossRef]
40. Shaterian, N.; Abdi, F.; Ghavidel, N.; Alidost, F. Role of cesarean section in the development of neonatal gut microbiota:A systematic review. Open Med. 2021, 16, 624–639. [CrossRef]
41. Shao, Y.; Forster, S.C.; Tsaliki, E.; Vervier, K.; Strang, A.; Simpson, N.; Kumar, N.; Stares, M.D.; Rodger, A.; Brocklehurst, P.; et al.Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019, 574, 117–121. [CrossRef]
42. Kumar, M.; Babaei, P.; Ji, B.; Nielsen, J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr. Healthy Aging 2016, 4, 3–16. [CrossRef] [PubMed]
43. Yu, Z.T.; Chen, C.; Kling, D.E.; Liu, B.; McCoy, J.M.; Merighi, M.; Heidtman, M.; Newburg, D.S. The principal fucosylate oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 2013, 23, 169–177.[CrossRef]
44. Beghetti, I.; Panizza, D.; Lenzi, J.; Gori, D.; Martini, S.; Corvaglia, L.; Aceti, A. Probiotics for preventing necrotizing enterocolitis in preterm infants: A network meta-analysis. Nutrients 2021, 13, 192. [CrossRef]
45. Martín-Peláez, S.; Cano-Ibáñez, N.; Pinto-Gallardo, M.; Amezcua-Prieto, C. The impact of probiotics, prebiotics, and synbiotics during pregnancy or lactation on the intestinal microbiota of children born by cesarean section: A systematic review. Nutrients 2022, 14, 341. [CrossRef]
46. Hechler, C.; Borewicz, K.; Beijers, R.; Saccenti, E.; Riksen-Walraven, M.; Smidt, H.; deWeerth, C. Association between psychosocial stress and fecal microbiota in pregnant women. Sci. Rep. 2019, 9, 4463. [CrossRef]
47. Bartnicka, A.; Gał˛ecka, M.; Mazela, J. The impact of perinatal and postnatal factors on composition of the intestinal microbiota ininfants. Stand. Med. Pediatr. 2016, 13, 165–172. (In Polish)
48. Jašarevi´c, E.; Howerton, C.L.; Howard, C.D.; Bale, T.L. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 2015, 156, 3265–3276. [CrossRef]
49. Alli, S.R.; Gorbovskaya, I.; Liu, J.C.W.; Kolla, N.J.; Brown, L.; Müller, D.J. The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: A systematic review of clinical trials and observational studies. Int. J. Mol. Sci. 2022,23, 4494. [CrossRef]
50. Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [CrossRef]
51. Huang, R.; Wang, K.; Hu, J. Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2016, 8, 483. [CrossRef]
52. Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011, 2, 256–261.[CrossRef]
53. Liu, R.T.; Walsh, R.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis ofcontrolled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [CrossRef]
54. Critchfield, J.W.; van Hemert, S.; Ash, M.; Mulder, L.; Ashwood, P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract. 2011, 161358. [CrossRef]
55. Severance, E.G.; Alaedini, A.; Yang, S.; Halling, M.; Gressitt, K.L.; Stallings, C.R.; Origoni, A.E.; Vaughan, C.; Khushalani, S.Leweke, F.M.; et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 2012,138, 48–53. [CrossRef]
56. Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 77. [CrossRef].
57. Ghannoum, M.A.; Ford, M.; Bonomo, R.A.; Gamal, A.; McCormick, T.S. A Microbiome-driven approach to combating depression during the COVID-19 pandemic. Front. Nutr. 2021, 8, 672390. [CrossRef]
58. Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet. Psychiat. 2020, 7, 611–627. [CrossRef].
59. Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet. Psychiat. 2020, 7, 611–627. [CrossRef]
60. Sajdel-Sulkowska, E.M. Neuropsychiatric Ramifications of COVID-19: Short-chain fatty acid deficiency and disturbance of microbiota-gut-brain axis signaling. BioMed Res. Int. 2021, 2021, 7880448. [CrossRef]
61. Liu, X.; Mao, B.; Gu, J.;Wu, J.; Cui, S.;Wang, G.; Zhao, J.; Zhang, H.; Chen,W. Blautia—A new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [CrossRef]
62. Schleupner, H.V.; Carmichael, M.J. Attention-Deficit/Hyperactivity Disorder and the gut microbiota–gut–brain axis: Closing research gaps through female inclusion in study design. Women 2022, 2, 231–253. [CrossRef]
63. Pärtty, A.; Kalliomäki, M.; Wacklin, P.; Salminen, S.; Isolauri, E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015, 77, 823–828. [CrossRef]

Most read articles by the same author(s)