18F-FDG PET Adults Whole-Body Scan Injected Dose Optimization: A Mini Review

Main Article Content

Murtadha Al-Fatlawi
Hayder Jasim Taher
Farideh pak
Peyman Sheikhzadeh

Keywords

18F-FDG, PET-CT

Abstract

While there is a necessity to have guidelines in order to control the 18F-FDG usage in PET-CT scan exams to protect the patient and the clinical staff, there is another necessity to keep these guidelines up-to-date and according to the recent advances and adaptations of the new PET-CT scanner modalities. Regarding SNMMI, a fixed range of 18F-FDG activity administered to the Whole-body scans in adult patients was established, yet the last update of these guidelines was in 2006. By the same token, the EANM last updated guidelines were in 2015. In this review 27 articles were successfully optimized the FDG injected dose using different techniques after 2015. These articles were analyzed and sorted to check the most common facilities that have been used to reach the optimized amount of FDG. As a result, most of the articles have very common features and each of them had an optimized rate that is under the lower limits the EANM injection guidelines. And due to the common advance techniques, that has been used in these scanners we concluded that its utterly possible to have an exam using a DTP below the guidelines while maintain a reportable image quality. Therefore, international guidelines need to take in count these advance facilities in the upcoming version of their recommendations.

Abstract 450 | PDF Downloads 256

References

1. Katsari K, Penna D, Arena V, Polverari G, Ianniello A, Italiano D, et al. Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI physics. 2021;8:1-15.
2. Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24(2):523-43.
3. Fahey F, Stabin M, editors. Dose optimization in nuclear medicine. Semin Nucl Med; 2014: Elsevier.
4. Hornnes C, Loft A, Højgaard L, Andersen FL. The effect of reduced scan time on response assessment FDG-PET/CT imaging using Deauville score in patients with lymphoma. European Journal of Hybrid Imaging. 2021;5(1).
5. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. Journal of nuclear Medicine. 2006;47(5):885-95.
6. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European journal of nuclear medicine and molecular imaging. 2015;42:328-54.
7. Del Sole A, Lecchi M, Lucignani G. Variability of [18F] FDG administered activities among patients undergoing PET examinations: an international multicenter survey. Radiation protection dosimetry. 2016;168(3):337-42.
8. de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI research. 2013;3:1-11.
9. Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? European journal of radiology. 2015;84(10):1873-8.
10. Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. Journal of Nuclear Medicine. 2009;50(6):844-8.
11. Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. Journal of Nuclear Medicine. 2004;45(5):797-801.
12. Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Moore A, et al. 18F-FDG PET/CT assessment of histopathologically confirmed mediastinal lymph nodes in non-small cell lung cancer using a penalised likelihood reconstruction. European radiology. 2016;26:4098-106.
13. Everaert H, Vanhove C, Lahoutte T, Muylle K, Caveliers V, Bossuyt A, et al. Optimal dose of 18 F-FDG required for whole-body PET using an LSO PET camera. European journal of nuclear medicine and molecular imaging. 2003;30:1615-9.
14. Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. Journal of Nuclear Medicine. 2005;46(4):603-7.
15. McMeekin H, Wagner T, Burniston M, McCool D. 400 MBq of 18F-FDG: one size no longer fits all? Nuclear Medicine Communications. 2014;35(7):781-2.
16. Dziuk M, Witkowska-Patena E, Giżewska A, Mazurek A, Pieczonka A, Koza M, et al. Determining the Optimal Dose of 18F-FDG for Hodgkin lymphoma Imaging on PET/CT Camera with BGO Crystals. 2020.
17. Zhang YQ, Hu PC, Wu RZ, Gu YS, Chen SG, Yu HJ, et al. The image quality, lesion detectability, and acquisition time of (18)F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2020;47(11):2507-15.
18. Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966-75.
19. Xiao J, Yu H, Sui X, Hu Y, Cao Y, Liu G, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by (18)F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 2021;49(1):269-78.
20. Hu P, Zhang Y, Yu H, Chen S, Tan H, Qi C, et al. Total-body (18)F-FDG PET/CT scan in oncology patients: how fast could it be? Eur J Nucl Med Mol Imaging. 2021;48(8):2384-94.
21. Hu Y, Liu G, Yu H, Wang Y, Li C, Tan H, et al. Feasibility of Acquisitions Using Total-Body PET/CT with an Ultra-Low (18)F-FDG Activity. J Nucl Med. 2022;63(6):959-65.
22. He Y, Gu Y, Yu H, Wu B, Wang S, Tan H, et al. Optimizing acquisition times for total-body positron emission tomography/computed tomography with half-dose (18)F-fluorodeoxyglucose in oncology patients. EJNMMI Phys. 2022;9(1):45.
23. Niederkohr RD, Hayden SP, Hamill JJ, Jones JP, Schaefferkoetter JD, Chiu E. Reproducibility of FDG PET/CT image-based cancer staging and standardized uptake values with simulated reduction of injected FDG dose or acquisition time. Am J Nucl Med Mol Imaging. 2021;11(5):428-42.
24. Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18 F-FDG. EJNMMI research. 2019;9:1-10.
25. Fragoso Costa P, Jentzen W, Brahmer A, Mavroeidi I-A, Zarrad F, Umutlu L, et al. Phantom-based acquisition time and image reconstruction parameter optimisation for oncologic FDG PET/CT examinations using a digital system. BMC cancer. 2022;22(1):1-18.
26. Tan H, Cai D, Sui X, Qi C, Mao W, Zhang Y, et al. Investigating ultra-low-dose total-body [18F]-FDG PET/CT in colorectal cancer: initial experience. European Journal of Nuclear Medicine and Molecular Imaging. 2022;49(3):1002-11.
27. Weber M, Jentzen W, Hofferber R, Herrmann K, Fendler WP, Rischpler C, et al. Evaluation of (18)F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision. BMC Cancer. 2021;21(1):62.
28. Namias M, Jeraj R. Patient and scanner-specific variable acquisition times for whole-body PET/CT imaging. Phys Med Biol. 2019;64(20):205013.
29. Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [(18)F]-FDG PET/CT. Ann Nucl Med. 2021;35(4):485-92.
30. Ferdova E, Baxa J, Narsanska A, Hes O, Finek J, Topolcan O, et al. Low-dose High-resolution (18)F-FDG-PET/CT Using Time-of-flight and Point-spread Function Reconstructions: A Role in the Detection of Breast Carcinoma Axillary Lymph Node Metastases. Anticancer Res. 2018;38(7):4145-8.
31. Prieto E, Garcia-Velloso MJ, Rodriguez-Fraile M, Moran V, Garcia-Garcia B, Guillen F, et al. Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality. Phys Med. 2018;46:134-9.
32. Rana N, Kaur M, Singh H, Mittal BR. Dose Optimization in (18)F-FDG PET Based on Noise-Equivalent Count Rate Measurement and Image Quality Assessment. J Nucl Med Technol. 2021;49(1):49-53.
33. Alves VPV, Brady S, Ata NA, Li Y, MacLean J, Zhang B, et al. Simulated Reduced-Count Whole-Body FDG PET: Evaluation in Children and Young Adults Imaged on a Digital PET Scanner. AJR Am J Roentgenol. 2022;219(6):952-61.
34. Mithun S, Jha AK, Puranik AD, Monteiro P, Shah S, Agarwal A, et al. Reduction of Radiation Exposure to Patients and Professionals by Reducing the Administered Activity of 18F-Fluorodeoxyglucose in a Positron-emission Tomography/Computed Tomography Study. Indian J Nucl Med. 2018;33(1):6-9.
35. Sagara H, Inoue K, Yaku H, Ohsawa A, Someya T, Yanagisawa K, et al. Optimization of injection dose in (18)F-FDG PET/CT based on the 2020 national diagnostic reference levels for nuclear medicine in Japan. Ann Nucl Med. 2021;35(11):1177-86.
36. Musarudin M, MMedPhys AR, Jusoh MS, Said MA. Optimization of scanning time of 18F-FDG whole body PET/CT imaging in obese patients using quadratic dose protocol. Med J Malaysia. 2021;76(5):637.
37. Chen MK, Menard DH, 3rd, Cheng DW. Determining the Minimal Required Radioactivity of 18F-FDG for Reliable Semiquantification in PET/CT Imaging: A Phantom Study. J Nucl Med Technol. 2016;44(1):26-30.
38. Weyts K, Lasnon C, Ciappuccini R, Lequesne J, Corroyer-Dulmont A, Quak E, et al. Artificial intelligence-based PET denoising could allow a two-fold reduction in [(18)F]FDG PET acquisition time in digital PET/CT. Eur J Nucl Med Mol Imaging. 2022;49(11):3750-60.
39. van Sluis J, Boellaard R, Dierckx R, Stormezand GN, Glaudemans A, Noordzij W. Image Quality and Activity Optimization in Oncologic (18)F-FDG PET Using the Digital Biograph Vision PET/CT System. J Nucl Med. 2020;61(5):764-71.
40. Umeda T, Miwa K, Murata T, Miyaji N, Wagatsuma K, Motegi K, et al. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images. Australas Phys Eng Sci Med. 2017;40(4):861-8.
41. Wickham F, McMeekin H, Burniston M, McCool D, Pencharz D, Skillen A, et al. Patient-specific optimisation of administered activity and acquisition times for (18)F-FDG PET imaging. EJNMMI Res. 2017;7(1):3.
42. Chang T, Chang G, Kohlmyer S, Clark JW, Rohren E, Mawlawi OR. Effects of injected dose, BMI and scanner type on NECR and image noise in PET imaging. Physics in Medicine & Biology. 2011;56(16):5275.
43. Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, et al. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. Journal of Nuclear Medicine. 2005;46(11):1825-34.
44. Makris NE, Huisman MC, Kinahan PE, Lammertsma AA, Boellaard R. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures. European journal of nuclear medicine and molecular imaging. 2013;40:1507-15.
45. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, et al. PET performance measurements using the NEMA NU 2-2001 standard. Journal of Nuclear Medicine. 2002;43(10):1398-409.
46. Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI physics. 2018;5(1):1-12.
47. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE transactions on medical imaging. 2006;25(7):907-21.
48. Vandenberghe S, Van Elmbt L, Guerchaft M, Clementel E, Verhaeghe J, Bol A, et al. Optimization of time-of-flight reconstruction on Philips GEMINI TF. European journal of nuclear medicine and molecular imaging. 2009;36:1994-2001.
49. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51(2):237-45.
50. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. Journal of Nuclear Medicine. 2007;48(3):471-80.
51. Surti S, Karp J. Experimental evaluation of a simple lesion detection task with time-of-flight PET. Physics in Medicine & Biology. 2008;54(2):373.
52. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. Soc Nuclear Med; 1983. p. 73-8.
53. Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ. Effect of scan time on oncologic lesion detection in whole-body PET. IEEE transactions on nuclear science. 2012;59(5):1940-7.
54. Armstrong IS, James JM, Williams HA, Kelly MD, Matthews JC. The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18F-FDG PET. Nuclear Medicine Communications. 2015;36(7):728-37.
55. Taniguchi T, Akamatsu G, Kasahara Y, Mitsumoto K, Baba S, Tsutsui Y, et al. Improvement in PET/CT image quality in overweight patients with PSF and TOF. Ann Nucl Med. 2015;29(1):71-7.
56. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI physics. 2020;7:1-33.
57. Lecomte R. Novel detector technology for clinical PET. European journal of nuclear medicine and molecular imaging. 2009;36:69-85.
58. Lewellen TK. Recent developments in PET detector technology. Physics in Medicine & Biology. 2008;53(17):R287.
59. Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance evaluation of the Vereos PET/CT system according to the NEMA NU2-2012 standard. Journal of Nuclear Medicine. 2019;60(4):561-7.
60. López-Mora DA, Carrió I, Flotats A. Digital PET vs Analog PET: Clinical Implications? Semin Nucl Med. 2022;52(3):302-11.
61. Salvadori J, Odille F, Verger A, Olivier P, Karcher G, Marie PY, et al. Head-to-head comparison between digital and analog PET of human and phantom images when optimized for maximizing the signal-to-noise ratio from small lesions. EJNMMI Phys. 2020;7(1):11.
62. Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI research. 2018;8:1-16.
63. Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clinical and Translational Imaging. 2019;7(2):139-47.
64. Baratto L, Park SY, Hatami N, Davidzon G, Srinivas S, Gambhir SS, et al. 18F-FDG silicon photomultiplier PET/CT: a pilot study comparing semi-quantitative measurements with standard PET/CT. PloS one. 2017;12(6):e0178936.
65. Reynés-Llompart G, Gámez-Cenzano C, Romero-Zayas I, Rodríguez-Bel L, Vercher-Conejero JL, Martí-Climent JM. Performance characteristics of the whole-body discovery IQ PET/CT system. Journal of Nuclear Medicine. 2017;58(7):1155-61.
66. Eriksson L, Townsend D, Conti M, Eriksson M, Rothfuss H, Schmand M, et al. An investigation of sensitivity limits in PET scanners. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;580(2):836-42.
67. Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance characteristics of the Biograph Vision Quadra PET/CT system with a long axial field of view using the NEMA NU 2-2018 standard. Journal of nuclear medicine. 2022;63(3):476-84.
68. Jakoby BW, Bercier Y, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE transactions on nuclear science. 2009;56(3):633-9.
69. Sheikhzadeh P, Sabet H, Ghadiri H, Geramifar P, Ghafarian P, Ay MR. Design, optimization and performance evaluation of BM-PET: A simulation study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019;940:274-82.
70. Sheikhzadeh P, Sabet H, Ghadiri H, Geramifar P, Ghafarian P, Ay M. Concept design and Monte Carlo performance evaluation of HeadphonePET: a novel brain-dedicated PET system based on partial cylindrical detectors. Journal of Instrumentation. 2018;13(07):P07008.
71. Machado MAD, Menezes VO, Namias M, Vieira NS, Queiroz CC, Matheoud R, et al. Protocols for Harmonized Quantification and Noise Reduction in Low-Dose Oncologic (18)F-FDG PET/CT Imaging. J Nucl Med Technol. 2019;47(1):47-54.
72. Karakatsanis NA, Fokou E, Tsoumpas C. Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects. American journal of nuclear medicine and molecular imaging. 2015;5(5):527.
73. Zargan S, Ghafarian P, Monfared AS, Sharafi A, Bakhshayeshkaram M, Ay M. Evaluation of radiation exposure to staff and environment dose from [18F]-FDG in PET/CT and cyclotron center using thermoluminescent dosimetry. Journal of biomedical physics & engineering. 2017;7(1):1.
74. Roch P, Celier D, Dessaud C, Etard C. Patient exposure from nuclear medicine in France: national follow-up and influence of the technology through diagnostic reference levels data analysis. Radiation Protection Dosimetry. 2018;179(1):87-94.
75. van Sluis J, Boellaard R, Somasundaram A, van Snick PH, Borra RJ, Dierckx RA, et al. Image quality and semiquantitative measurements on the biograph vision PET/CT system: initial experiences and comparison with the biograph mCT. Journal of Nuclear Medicine. 2020;61(1):129-35.

Most read articles by the same author(s)