PHARMACOLOGICAL IMPORTANCE OF LYCOPENE FROM WILD CHERRY TOMATOES AGAINST HUNTINGTON'S DISEASE
Main Article Content
Keywords
Lycopene, Huntington’s Disease, Neuroprotection, Oxidative Stress, Anti-inflammatory Mechanisms
Abstract
Huntington’s Disease (HD) is a progressive neurodegenerative disorder that severely impacts the aging population and is characterized by complex genetic and biochemical pathologies. Among various natural compounds under investigation, lycopene, an aliphatic polyunsaturated carotenoid abundantly present in tomatoes and other red fruits, has shown significant potential in mitigating the oxidative and inflammatory mechanisms underlying HD. Due to its lipophilic nature, lycopene efficiently traverses the blood–brain barrier, exerting direct neuroprotective effects within the central nervous system. Its potent antioxidant capacity enables the neutralization of reactive oxygen species, thereby reducing neuronal oxidative damage—a hallmark of neurodegeneration. Concurrently, its anti-inflammatory activity downregulates chronic neuroinflammation, which is implicated in the progression of neuropsychiatric disorders. Given that impaired antioxidant defenses and aberrant protein folding contribute to neurodegenerative diseases such as Alzheimer’s and Huntington’s enhancing the bioavailability of natural neuroprotective agents like lycopene is of growing interest. Recent advances in nanocarrier-based drug delivery systems have demonstrated promise in improving lycopene’s stability, permeability, and clinical efficacy for brain-targeted therapies. Additionally, wild cherry tomatoes, a rich natural source of lycopene and other phytonutrients, provide synergistic neuroprotective effects through the modulation of oxy-inflammatory pathways, including PI3K/Akt signaling. This review highlights the pharmacological potential of lycopene derived from wild cherry tomatoes as a promising therapeutic candidate against Huntington’s Disease, emphasizing its multifaceted role in antioxidant defense, anti-inflammatory regulation, and neuronal survival.
References
2. Ali, G. F., Hassanein, E. H. M., & Mohamed, W. R. (2024). Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies [Review of Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies]. Naunyn-Schmiedeberg s Archives of Pharmacology, 397(11), 8165. Springer Science+Business Media. https://doi.org/10.1007/s00210-024-03164-x
3. Alotaibi, B. S., Saleem, U., Ahmad, A., Chaudhary, Z., Farrukh, M., Khayat, R. O., Alsharif, I., Baokbah, T. A. S., Albalawi, A. E., Althobaiti, N. A., Shah, M. A., Anam, K., Alanazi, Y. F., Panichayupakaranant, P., Blundell, R., & Sanches‐Silva, A. (2024). Chamuangone-enriched rice bran oil ameliorates neurodegeneration in haloperidol-induced Parkinsonian rat model via modulation of neuro-inflammatory mediators and suppression of oxidative stress markers. Italian Journal of Food Science, 36(2), 163. https://doi.org/10.15586/ijfs.v36i2.2551
4. Amr, K., Abdelmawgoud, H., Ali, Z., Shehata, S., & Raslan, H. (2018). Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. British Journal of Biomedical Science, 75(2), 82. https://doi.org/10.1080/ 09674845.2017.1402404
5. Andrade, S., Nunes, D., Dabur, M., Ramalho, M. J., Pereira, M. do C., & Loureiro, J. A. (2023). Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials [Review of Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials]. Pharmaceutics, 15(1), 212. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/pharmaceutics15010212
6. Askeland, G., Dosoudilova, Z., Rodinová, M., Klempíř, J., Lišková, I., Kuśnierczyk, A., Bjørås, M., Nesse, G., Klungland, A., Hansíková, H., & Eide, L. (2018). Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington’s disease patients. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27985-y
7. Avola, R., Furnari, A. G., Graziano, A. C. E., Russo, A., & Cardile, V. (2024). Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants, 13(2), 178. https://doi.org/10.3390/antiox13020178
8. Babazadeh, A., Vahed, F. M., Liu, Q., Siddiqui, S. A., Kharazmi, M. S., & Jafari, S. M. (2023). Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases [Review of Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases]. ACS Omega, 8(4), 3667. American Chemical Society. https://doi.org/10.1021/acsomega.2c06098
9. Baburaj, R., Sandur, R., & Das, K. (2023). Investigation of the Pro-active Role of Alpha Amyrin Nanoemulsions in Quashing Neurodegeneration, Excitotoxicity, and Neuronal Inflammation-A Combined in vivo and in silico Approach. Indian Journal of Pharmaceutical Education and Research, 58(1), 240. https://doi.org/10.5530/ijper.58.1.26
10. Bakare, O. O., Fadaka, A. O., Akanbi, M. O., Akinyede, K. A., Klein, A., & Keyster, M. (2021). Evaluation of selected carotenoids of Lycopersicon esculentum variants as therapeutic targets for ‘Alzheimer’s disease: an in silico approach. BMC Molecular and Cell Biology, 22(1). https://doi.org/10.1186/s12860-021-00386-2
11. Bano, D., Zanetti, F., Mende, Y., & Nicotera, P. (2011). Neurodegenerative processes in Huntington’s disease [Review of Neurodegenerative processes in Huntington’s disease]. Cell Death and Disease, 2(11). Springer Nature. https://doi.org/10.1038/cddis.2011.112
12. Barbalace, M. C., Freschi, M., Rinaldi, I., Zallocco, L., Malaguti, M., Manera, C., Ortore, G., Zuccarini, M., Ronci, M., Cuffaro, D., Macchia, M., Hrelia, S., Giusti, L., Digiacomo, M., & Angeloni, C. (2024). Unraveling the Protective Role of Oleocanthal and Its Oxidation Product, Oleocanthalic Acid, against Neuroinflammation. Antioxidants, 13(9), 1074. https://doi.org/ 10.3390/antiox13091074
13. Bečanović, K., Asghar, M., Gadawska, I., Sachdeva, S., Walker, D. W., Lazarowski, E. R., Franciosi, S., Park, K. H. J., Côté, H. C. F., & Leavitt, B. R. (2021). Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. Npj Aging and Mechanisms of Disease, 7(1). https://doi.org/10.1038/s41514-021-00079-2
14. Bhardwaj, M., & Kumar, A. (2015). Neuroprotective Effect of Lycopene Against PTZ-induced Kindling Seizures in Mice: Possible Behavioural, Biochemical and Mitochondrial Dysfunction. Phytotherapy Research, 30(2), 306. https://doi.org/10.1002/ptr.5533
15. Braun, M. M., & Puglielli, L. (2022). Defective PTEN-induced kinase 1/Parkin mediated mitophagy and neurodegenerative diseases [Review of Defective PTEN-induced kinase 1/Parkin mediated mitophagy and neurodegenerative diseases]. Frontiers in Cellular Neuroscience, 16. Frontiers Media. https://doi.org/10.3389/fncel.2022.1031153
16. Bustamante-Barrientos, F. A., Luque‐Campos, N., Araya, M. J., Lara-Barba, E., Solminihac, J. D., Pradenas, C., Molina, L., Herrera-Luna, Y., Utreras‐Mendoza, Y., Elizondo‐Vega, R., Vega-Letter, A. M., & Luz‐Crawford, P. (2023). Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells [Review of Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells]. Journal of Translational Medicine, 21(1). BioMed Central. https://doi.org/10.1186/s12967-023-04493-w
17. Carvalho, A. N., Firuzi, O., Gama, M. J., Horssen, J. van, & Saso, L. (2016). Oxidative Stress and Antioxidants in Neurological Diseases: Is There Still Hope? [Review of Oxidative Stress and Antioxidants in Neurological Diseases: Is There Still Hope?]. Current Drug Targets, 18(6), 705. Bentham Science Publishers. https://doi.org/10.2174/1389450117666160401120514
18. Catani, M. V., Gasperi, V., Bisogno, T., & Maccarrone, M. (2017). Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases [Review of Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases]. Antioxidants and Redox Signaling, 29(1), 37. Mary Ann Liebert, Inc. https://doi.org/10.1089/ars.2016.6958
19. Chen, W.-T., & Dodson, M. (2023). The untapped potential of targeting NRF2 in neurodegenerative disease. Frontiers in Aging, 4. https://doi.org/10.3389/fragi.2023.1270838
20. Cilleros-Holgado, P., Gómez-Fernández, D., Piñero-Pérez, R., Romero-Domínguez, J. M., Reche-López, D., López-Cabrera, A., Álvarez-Córdoba, M., Munuera-Cabeza, M., Talaverón-Rey, M., Suárez-Carrillo, A., Romero-González, A., & Sánchez‐Alcázar, J. A. (2023). Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules, 13(12), 1789. https://doi.org/10.3390/ biom13121789
21. Clemente‐Suárez, V. J., Redondo-Flórez, L., Beltrán-Velasco, A. I., Ramos‐Campo, D. J., Belinchón-deMiguel, P., Martínez‐Guardado, I., Dalamitros, A. A., Yañéz‐Sepúlveda, R., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities [Review of Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities]. Biomedicines, 11(9), 2488. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/biomedicines11092488
22. Cruz, V. P. de la, Elinos-Calderón, D., Robledo-Arratia, Y., Medina‐Campos, O. N., Pedraza-Chaverrı́, J., Ali, S. F., & Santamarı́a, A. (2008). Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington’s disease. Behavioural Brain Research, 199(2), 210. https://doi.org/10.1016/j.bbr.2008.11.037
23. Dakal, T. C., Xiao, F., Bhusal, C. K., Sabapathy, P. C., Segal, R., Chen, J., & Bai, X. (2025). Lipids dysregulation in diseases: core concepts, targets and treatment strategies [Review of Lipids dysregulation in diseases: core concepts, targets and treatment strategies]. Lipids in Health and Disease, 24(1). BioMed Central. https://doi.org/10.1186/s12944-024-02425-1
24. Darwish, S. F., Elbadry, A. M. M., Elbokhomy, A. S., Salama, G. A., & Salama, R. M. (2023). The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases [Review of The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases]. Frontiers in Aging, 4. Frontiers Media. https://doi.org/10.3389/fragi.2023.1231706
25. D’Egidio, F., Castelli, V., Cimini, A., & d’Angelo, M. (2023). Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington’s Disease [Review of Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington’s Disease]. Antioxidants, 12(3), 571. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/antiox12030571
26. D’Egidio, F., Castelli, V., Lombardozzi, G., Ammannito, F., Cimini, A., & d’Angelo, M. (2023). Therapeutic advances in neural regeneration for Huntington’s disease. Neural Regeneration Research, 19(9), 1991. https://doi.org/10.4103/1673-5374.390969
27. D’Egidio, F., Qosja, E., Ammannito, F., Topi, S., d’Angelo, M., Cimini, A., & Castelli, V. (2025). Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies [Review of Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies]. Life, 15(4), 577. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/life15040577
28. Elbandy, M. (2022). Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders [Review of Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders]. Molecules, 28(1), 2. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules28010002
29. Elkader, H. A. E. A., Hussein, M. M., Mohammed, N. A. ., & Abdou, H. M. (2023). The protective role of l-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats. Naunyn-Schmiedeberg s Archives of Pharmacology, 397(6), 4365. https://doi.org/10.1007/s00210-023-02887-7
30. eMargulis, J., & eFinkbeiner, S. (2014). Proteostasis in striatal cells and selective neurodegeneration in Huntington’s disease. Frontiers in Cellular Neuroscience, 8. https://doaj.org/article/703e92d5ca1f439db055f03d0e2b7ec0
31. Figueira, I., Garcia, G., Pimpão, R. C., Terrasso, A. P., Costa, I. G. M., Almeida, A. F., Tavares, L., Pais, T. F., Pinto, P., Ventura, M. R., Filipe, A., McDougall, G. J., Stewart, D., Kim, K., Palmela, I., Brites, D., Brito, M. A., Brito, C., & Santos, C. N. dos. (2017). Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11512-6
32. Gambino, G., Frinchi, M., Giglia, G., Scordino, M., Urone, G., Ferraro, G., Mudò, G., Sardo, P., Majo, D. D., & Liberto, V. D. (2023). Impact of “Golden” tomato juice on cognitive alterations in metabolic syndrome: Insights into behavioural and biochemical changes in a high-fat diet rat model. Journal of Functional Foods, 112, 105964. https://doi.org/10.1016/j.jff.2023.105964
33. Gatto, E., Rojas, N. G., Persi, G., Etcheverry, J. L., Cesarini, M. E., & Perandones, C. (2020). Huntington disease: Advances in the understanding of its mechanisms [Review of Huntington disease: Advances in the understanding of its mechanisms]. Clinical Parkinsonism & Related Disorders, 3, 100056. Elsevier BV. https://doi.org/10.1016/j.prdoa.2020.100056
34. Giorgi, C., Marchi, S., Simões, I. C. M., Ren, Z., Morciano, G., Perrone, M., Patalas-Krawczyk, P., Borchard, S., Jędrak, P., Pierzynowska, K., Szymański, J., Wang, D. Q., Portincasa, P., Węgrzyn, G., Zischka, H., Dobrzyń, P., Bonora, M., Duszyński, J., Rimessi, A., … Więckowski, M. R. (2018). Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases [Review of Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases]. International Review of Cell and Molecular Biology, 209. Elsevier BV. https://doi.org/10.1016/bs.ircmb.2018.05.006
35. Goyal, R., Mittal, P., Gautam, R. K., Kamal, M. A., Perveen, A., Garg, V., Αλεξίου, Α., Saboor, M., Haque, S., Farhana, A., Papadakis, M., & Ashraf, G. M. (2024). Natural products in the management of neurodegenerative diseases. Nutrition & Metabolism, 21(1). https://doi.org/10.1186/s12986-024-00800-4
36. Grosso, C., Santos, M., & Barroso, M. F. (2023). From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders [Review of From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders]. Antioxidants, 12(8), 1603. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/antiox12081603
37. Guedes-Dias, P., Pinho, B. R., Soares, T. R., Proença, J. de, Duchen, M. R., & Oliveira, J. M. A. (2015). Mitochondrial dynamics and quality control in Huntington’s disease [Review of Mitochondrial dynamics and quality control in Huntington’s disease]. Neurobiology of Disease, 90, 51. Elsevier BV. https://doi.org/10.1016/j.nbd.2015.09.008
38. Guo, X., Disatnik, M., Monbureau, M., Shamloo, M., Mochly‐Rosen, D., & Qi, X. (2013). Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. Journal of Clinical Investigation, 123(12), 5371. https://doi.org/10. 1172/jci70911
39. Hu, D., Liu, Z., & Qi, X. (2021). Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? [Review of Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases?]. Frontiers in Neuroscience, 15. Frontiers Media. https://doi.org/10.3389/fnins.2021.746873
40. Hu, D., Sun, X., Magpusao, A. N., Fedorov, Y., Thompson, M. A., Wang, B., Lundberg, K. C., Adams, D., & Qi, X. (2021). Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington’s disease. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25651-y
41. Imran, M., Ghorat, F., Ul‐Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., Shariati, M. A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M. H., & Ребезов, М. (2020). Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders [Review of Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders]. Antioxidants, 9(8), 706. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/antiox9080706
42. Jayawickreme, D. K., Ekwosi, C., Anand, A., Andres‐Mach, M., Właź, P., & Socała, K. (2024). Luteolin for neurodegenerative diseases: a review [Review of Luteolin for neurodegenerative diseases: a review]. Pharmacological Reports, 76(4), 644. Elsevier BV. https://doi.org/10.1007/ s43440-024-00610-8
43. Jiang, A., Handley, R. R., Lehnert, K., & Snell, R. G. (2023). From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington’s Disease Research [Review of From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington’s Disease Research]. International Journal of Molecular Sciences, 24(16), 13021. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms241613021
44. Jurcău, A. (2022). Molecular Pathophysiological Mechanisms in Huntington’s Disease [Review of Molecular Pathophysiological Mechanisms in Huntington’s Disease]. Biomedicines, 10(6), 1432. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/biomedicines 10061432
45. Khayatan, D., Razavi, S. M., Arab, Z. N., Khanahmadi, M., Samanian, A., Momtaz, S., Sukhorukov, V. N., Jamialahmadi, T., Abdolghaffari, A. H., Barreto, G. E., & Sahebkar, A. (2024). Protective Effects of Plant-Derived Compounds Against Traumatic Brain Injury [Review of Protective Effects of Plant-Derived Compounds Against Traumatic Brain Injury]. Molecular Neurobiology, 61(10), 7732. Springer Science+Business Media. https://doi.org/10.1007/s12035-024-04030-w
46. Komatsu, H. (2021). Innovative Therapeutic Approaches for Huntington’s Disease: From Nucleic Acids to GPCR-Targeting Small Molecules [Review of Innovative Therapeutic Approaches for Huntington’s Disease: From Nucleic Acids to GPCR-Targeting Small Molecules]. Frontiers in Cellular Neuroscience, 15. Frontiers Media. https://doi.org/10.3389/fncel.2021.785703
47. Krzysztoń-Russjan, J., Zielonka, D., Jackiewicz, J., Kuśmirek, S., Bubko, I., Klimberg, A., Marcinkowski, J., & Anuszewska, E. (2012). F09 The study on molecular changes related to energy metabolism in Huntington’s disease subjects: looking for biomarkers. Journal of Neurology Neurosurgery & Psychiatry, 83. https://doi.org/10.1136/jnnp-2012-303524.74
48. Kumar, A., & Ratan, R. R. (2016). Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly [Review of Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly]. Journal of Huntington s Disease, 5(3), 217. IOS Press. https://doi.org/ 10.3233/jhd-160205
49. Kumar, G. (2023). Editorial: Neuroprotective mechanisms by phytochemicals in neurological disorders. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1149639
50. Lakra, P., Aditi, K., & Agrawal, N. (2019). Peripheral Expression of Mutant Huntingtin is a Critical Determinant of Weight Loss and Metabolic Disturbances in Huntington’s Disease. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46470-8
51. Landles, C., & Bates, G. P. (2004). Huntingtin and the molecular pathogenesis of Huntington’s disease [Review of Huntingtin and the molecular pathogenesis of Huntington’s disease]. EMBO Reports, 5(10), 958. Springer Nature. https://doi.org/10.1038/sj.embor.7400250
52. Liberto, V. D., & Mudò, G. (2022). Role of Bioactive Molecules on Neuroprotection, Oxidative Stress, and Neuroinflammation Modulation. International Journal of Molecular Sciences, 23(24), 15925. https://doi.org/10.3390/ijms232415925
53. Lim, D. W., Lee, J., Lee, C.-H., & Kim, Y. T. (2024). Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review [Review of Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review]. International Journal of Molecular Sciences, 25(20), 11223. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms252011223
54. Lima, E. P. de, Laurindo, L. F., Catharin, V. C. S., Direito, R., Tanaka, M., German, Í. J. S., Lamas, C. B., Guiguer, É. L., Araújo, A. C., Fiorini, A. M. R., & Barbalho, S. M. (2025). Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence [Review of Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence]. Metabolites, 15(2), 124. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/metabo15020124
55. Limanaqi, F., Biagioni, F., Mastroiacovo, F., Polzella, M., Lazzeri, G., & Fornai, F. (2020). Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation [Review of Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation]. Antioxidants, 9(10), 1022. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/antiox9101022
56. Liu, Y., Chen, Z., Li, A., Liu, R., Yang, H., & Xia, X. (2022). The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access [Review of The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access]. Frontiers in Oncology, 12. Frontiers Media. https://doi.org/10.3389/fonc. 2022.936054
57. Lv, C., Zhou, Y., Wu, C., Shao, Y., Lu, C., & Wang, Q. (2015). The changes in miR‐130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes/Metabolism Research and Reviews, 31(7), 717. https://doi.org/10.1002/dmrr.2659
58. Marino, A., Battaglini, M., Desii, A., Lavarello, C., Genchi, G. G., Petretto, A., & Ciofani, G. (2021). Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-basedin vitromodel of Parkinson’s disease. Biomaterials Science, 9(24), 8171. https://doi.org/10.1039/d1bm01202a
59. Martin-Solana, E., Casado-Zueras, L., Torres, T. E., Goya, G. F., Fernández‐Fernández, M. R., & Fernández, J. (2024). Disruption of the mitochondrial network in a mouse model of Huntington’s disease visualized by in-tissue multiscale 3D electron microscopy. Acta Neuropathologica Communications, 12(1). https://doi.org/10.1186/s40478-024-01802-2
60. McGarry, A., Gaughan, J., Hackmyer, C., Lovett, J., Khadeer, M., Shaikh, H., Pradhan, B., Ferraro, T. N., Wainer, I. W., & Moaddel, R. (2020). Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington’s disease for participants of varying functional disability: a pilot study. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77526-9
61. Mohandas, N. (1 C.E.). p3. Williams Hematology.
62. Morigaki, R., & Goto, S. (2017). Striatal Vulnerability in Huntington’s Disease: Neuroprotection Versus Neurotoxicity [Review of Striatal Vulnerability in Huntington’s Disease: Neuroprotection Versus Neurotoxicity]. Brain Sciences, 7(6), 63. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/brainsci7060063
63. Morigaki, R., Lee, J. H., Yoshida, T., Wüthrich, C., Hu, D., Crittenden, J. R., Friedman, A., Kubota, Y., & Graybiel, A. M. (2020). Spatiotemporal Up-Regulation of Mu Opioid Receptor 1 in Striatum of Mouse Model of Huntington’s Disease Differentially Affecting Caudal and Striosomal Regions. Frontiers in Neuroanatomy, 14. https://doi.org/10.3389/fnana.2020.608060
64. Mousavi, S. E., Saberi, P., Ghasemkhani, N., Fakhraei, N., Mokhtari, R., & Dehpour, A. R. (2018). Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide. Journal of Pharmacy & Pharmaceutical Sciences, 21, 184. https://doi.org/10.18433/jpps29770
65. Nahar, L., Charoensup, R., Kalieva, K., Habibi, E., Guo, M., Wang, D., Kvasnica, M., Önder, A., & Sarker, S. D. (2025). Natural products in neurodegenerative diseases: recent advances and future outlook [Review of Natural products in neurodegenerative diseases: recent advances and future outlook]. Frontiers in Pharmacology, 16. Frontiers Media. https://doi.org/10.3389/ fphar.2025.1529194
66. Naiel, M. A. E., Negm, S. S., Ghazanfar, S., Farid, A., & Shukry, M. (2023). Acrylamide toxicity in aquatic animals and its mitigation approaches: an updated overview [Review of Acrylamide toxicity in aquatic animals and its mitigation approaches: an updated overview]. Environmental Science and Pollution Research, 30(53), 113297. Springer Science+Business Media. https://doi.org/10.1007/s11356-023-30437-4
67. Naik, B., Richa, S., Bharadwaj, S., Mishra, S., Kumar, V., Kumar, V., Saris, P. E. J., Gupta, A. K., Mishra, R., Gupta, U., Rustagi, S., & Preet, M. S. (2024). Utilizing marine algal metabolites to fight neurodegenerative diseases. Frontiers in Marine Science, 11. https://doi.org/10. 3389/fmars.2024.1370839
68. Nemecz, M., Ştefan, S., Comariţa, I. K., Constantin, A., Tanko, G., Guja, C., & Georgescu, A. (2023). Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovascular Diabetology, 22(1). https://doi.org/10.1186/s12933-023-01988-0
69. Neueder, A., Kojer, K., Hering, T., Lavery, D. J., Chen, J., Birth, N., Hallitsch, J., Trautmann, S., Parker, J., Flower, M., Sethi, H., Haider, S., Lee, J., Tabrizi, S. J., & Orth, M. (2022). Abnormal molecular signatures of inflammation, energy metabolism, and vesicle biology in human Huntington disease peripheral tissues. Genome Biology, 23(1). https://doi.org/10.1186/s13059-022-02752-5
70. Neueder, A., & Orth, M. (2020). Mitochondrial biology and the identification of biomarkers of Huntington’s disease [Review of Mitochondrial biology and the identification of biomarkers of Huntington’s disease]. Neurodegenerative Disease Management, 10(4), 243. Future Medicine. https://doi.org/10.2217/nmt-2019-0033
71. Norat, P., Soldozy, S., Sokolowski, J. D., Gorick, C. M., Kumar, J. S., Chae, Y., Yağmurlu, K., Prada, F., Walker, M., Levitt, M. R., Price, R. J., Tvrdík, P., & Kalani, M. Y. S. (2020). Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation [Review of Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation]. Npj Regenerative Medicine, 5(1). Nature Portfolio. https://doi.org/10.1038/ s41536-020-00107-x
72. Olivieri, F., Spazzafumo, L., Bonafè, M., Recchioni, R., Prattichizzo, F., Marcheselli, F., Micolucci, L., Mensa’, E., Giuliani, A., Santini, G., Gobbi, M., Lazzarini, R., Boemi, M., Testa, R., Antonicelli, R., Procopio, A. D., & Bonfigli, A. R. (2015). MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget, 6(34), 35372. https://doi.org/10.18632/oncotarget.6164
73. Park, H., Stumpf, A., Broman, K., Jansen, J., Dunn, T., Scott, M., & Crowe‐White, K. (2021). Role of lycopene in mitochondrial protection during differential levels of oxidative stress in primary cortical neurons. Brain Disorders, 3, 100016. https://doi.org/10.1016/j. dscb.2021.100016
74. Paul, R., Mazumder, M. K., Nath, J., Deb, S., Paul, S., Bhattacharya, P., & Borah, A. (2020). Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders [Review of Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders]. Neurochemistry International, 140, 104823. Elsevier BV. https://doi.org/10.1016/j.neuint. 2020.104823
75. Pekdemir, B., Raposo, A., Saraiva, A., Lima, M. J., Alsharari, Z. D., BinMowyna, M. N., & Karav, S. (2024). Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health [Review of Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health]. Nutrients, 16(24), 4368. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nu16244368
76. Phillips, G. R., Hancock, S. E., Brown, S. H. J., Jenner, A. M., Kreilaus, F., Newell, K. A., & Mitchell, T. W. (2020). Cholesteryl ester levels are elevated in the caudate and putamen of Huntington’s disease patients. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76973-8
77. Pinto, J. R. D., Neto, B. F., Fernandes, J., Kerkis, I., & Araldi, R. P. (2024). How does the age of control individuals hinder the identification of target genes for Huntington’s disease? Frontiers in Genetics, 15. https://doi.org/10.3389/fgene.2024.1377237
78. Pirhaji, L., Milani, P., Dalin, S., Wassie, B. T., Dunn, D. E., Fenster, R. J., Ávila-Pacheco, J., Greengard, P., Clish, C. B., Heiman, M., Lo, D. C., & Fraenkel, E. (2017). Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00353-6
79. Przybylska, S. (2019). Lycopene – a bioactive carotenoid offering multiple health benefits: a review [Review of Lycopene – a bioactive carotenoid offering multiple health benefits: a review]. International Journal of Food Science & Technology, 55(1), 11. Wiley. https://doi.org/10. 1111/ijfs.14260
80. Rafe, Md. R. (2023). Drug delivery for neurodegenerative diseases is a problem, but lipid nanocarriers could provide the answer [Review of Drug delivery for neurodegenerative diseases is a problem, but lipid nanocarriers could provide the answer]. Nanotheranostics, 8(1), 90. Ivyspring International Publisher. https://doi.org/10.7150/ntno.88849
81. Rahman, Md. H., Bajgai, J., Fadriquela, A., Sharma, S., Trinh, T. T., Akter, R., Jeong, Y., Goh, S. H., Kim, C.-S., & Lee, K. (2021). Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges [Review of Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges]. Molecules, 26(17), 5327. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules26175327
82. Ramaswamy, S., Shannon, K. M., & Kordower, J. H. (2007). Huntington’s Disease: Pathological Mechanisms and Therapeutic Strategies [Review of Huntington’s Disease: Pathological Mechanisms and Therapeutic Strategies]. Cell Transplantation, 16(3), 301. SAGE Publishing. https://doi.org/10.3727/000000007783464687
83. Rasool, M., Malik, A., Qureshi, M. S., Manan, A., Pushparaj, P. N., Asif, M., Qazi, M. H., Qazi, A., Kamal, M. A., Gan, S. H., & Sheikh, I. A. (2014). Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds [Review of Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds]. Evidence-Based Complementary and Alternative Medicine, 2014(1). Hindawi Publishing Corporation. https://doi.org/10.1155/2014/979730
84. Raza, B., Hameed, A., & Saleem, M. Y. (2022). Fruit nutritional composition, antioxidant and biochemical profiling of diverse tomato (Solanum lycopersicum L.) genetic resource. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1035163
85. Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V., & Varrassi, G. (2019). Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review [Review of Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review]. Advances in Therapy, 37(1), 113. Adis, Springer Healthcare. https://doi.org/10.1007/s12325-019-01148-5
86. Risby-Jones, G., Lee, J. D., Woodruff, T. M., & Fung, J. N. (2024). Sex differences in Huntington’s disease from a neuroinflammation perspective. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1384480
87. Rodríguez‐Concepción, M., Ávalos, J., Bonet, M. L., Boronat, A., Gómez‐Gómez, L., Hornero‐Méndez, D., Limón, M. C., Meléndez‐Martínez, A. J., Olmedilla‐Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarı́as, L., & Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health [Review of A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health]. Progress in Lipid Research, 70, 62. Elsevier BV. https://doi.org/10.1016/j.plipres.2018.04.004
88. Saini, R. K., Rengasamy, K. R. R., Mahomoodally, M. F., & Keum, Y. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives [Review of Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives]. Pharmacological Research, 155, 104730. Elsevier BV. https://doi.org/10.1016/ j.phrs.2020.104730
89. Sairazi, N. S. M., & Sirajudeen, K. N. S. (2020). Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases [Review of Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases]. Evidence-Based Complementary and Alternative Medicine, 2020(1). Hindawi Publishing Corporation. https://doi.org/10.1155/2020/6565396
90. Santarsiero, A., Bochicchio, A., Funicello, M., Lupattelli, P., Choppin, S., Colobert, F., Hanquet, G., Schiavo, L., Convertini, P., Chiummiento, L., & Infantino, V. (2020). New synthesized polyoxygenated diarylheptanoids suppress lipopolysaccharide-induced neuroinflammation. Biochemical and Biophysical Research Communications, 529(4), 1117. https://doi.org/10.1016/j .bbrc.2020.06.122
91. Satyam, S. M., & Bairy, L. K. (2022). Neuronutraceuticals Combating Neuroinflammaging: Molecular Insights and Translational Challenges—A Systematic Review [Review of Neuronutraceuticals Combating Neuroinflammaging: Molecular Insights and Translational Challenges—A Systematic Review]. Nutrients, 14(15), 3029. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nu14153029
92. Schon, E. A., & Manfredi, G. (2003a). Neuronal degeneration and mitochondrial dysfunction [Review of Neuronal degeneration and mitochondrial dysfunction]. Journal of Clinical Investigation, 111(3), 303. American Society for Clinical Investigation. https://doi.org/10. 1172/jci17741
93. Schon, E. A., & Manfredi, G. (2003b). Neuronal degeneration and mitochondrial dysfunction. Journal of Clinical Investigation, 111(3), 303. https://doi.org/10.1172/jci200317741
94. Shafie, A., Ashour, A. A., Anwar, S., Anjum, F., & Hassan, Md. I. (2024). Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease. Archives of Pharmacal Research, 47(6), 571. https://doi.org/10.1007/s12272-024-01499-w
95. Sharifi‐Rad, M., Lankatillake, C., Dias, D. A., Docea, A. O., Mahomoodally, M. F., Lobine, D., Chazot, P. L., Kurt, B., Tumer, T. B., Moreira, A. C., Sharopov, F., Martorell, M., Martins, N., Cho, W. C., Călina, D., & Sharifi‐Rad, J. (2020). Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics [Review of Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics]. Journal of Clinical Medicine, 9(4), 1061. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/jcm9041061
96. Shin, J. H., Yang, H.-J., Ahn, J., Jo, S., Chung, S. J., Lee, J., Kim, H. S., & Kim, M. (2024). Evidence-Based Review on Symptomatic Management of Huntington’s Disease. Journal of Movement Disorders, 17(4), 369. https://doi.org/10.14802/jmd.24140
97. Shoaib, S., Ansari, M. A., Fatease, A. A., Safhi, A. Y., Hani, U., Jahan, R., Alomary, M. N., Ansari, M. N., Ahmed, N., Wahab, S., Ahmad, W., Yusuf, N., & Islam, N. (2023). Plant-Derived Bioactive Compounds in the Management of Neurodegenerative Disorders: Challenges, Future Directions and Molecular Mechanisms Involved in Neuroprotection [Review of Plant-Derived Bioactive Compounds in the Management of Neurodegenerative Disorders: Challenges, Future Directions and Molecular Mechanisms Involved in Neuroprotection]. Pharmaceutics, 15(3), 749. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/pharmaceutics15030749
98. Simonian, N. A. (1996). Oxidative Stress in Neurodegenerative Diseases. The Annual Review of Pharmacology and Toxicology, 36(1), 83. https://doi.org/10.1146/annurev.pharmtox.36.1.83
99. Simonian, N. A., & Coyle, J. T. (1996). Oxidative Stress in Neurodegenerative Diseases [Review of Oxidative Stress in Neurodegenerative Diseases]. The Annual Review of Pharmacology and Toxicology, 36(1), 83. Annual Reviews. https://doi.org/10.1146/annurev.pa.36.040196.000503
100. Singh, P., Mishra, G., Molla, M., Yimer, Y. S., Zewdu, W. S., Ferede, Y. A., & Ewunetie, A. (2022). Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. Journal of Functional Foods, 92, 105047. https://doi.org/10.1016/j. jff.2022.105047
101. Tabrizi, S. J., Flower, M., Ross, C. A., & Wild, E. J. (2020). Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities [Review of Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities]. Nature Reviews Neurology, 16(10), 529. Nature Portfolio. https://doi.org/10.1038/s41582-020-0389-4
102. Tao, L., Huang, X., Xu, M., Qin, Z., Zhang, F., Hua, F., Jiang, X., & Wang, Y. (2020). Value of circulating miRNA-21 in the diagnosis of subclinical diabetic cardiomyopathy. Molecular and Cellular Endocrinology, 518, 110944. https://doi.org/10.1016/j.mce.2020.110944
103. Tarkhasi, A. (2016). Effect of Edible Coating Containing Pomegranate Peel Extract on Quality and Shelf Life of Silver Carp (Hypophthalmichthys molitrix) Fillet during Refrigerated Storage. Journal of Food & Industrial Microbiology, 2(2). https://doi.org/10.4172/2572-4134.1000112
104. Taşkıran, A. Ş., & Taştemur, Y. (2021). The role of nitric oxide in anticonvulsant effects of lycopene supplementation on pentylenetetrazole-induced epileptic seizures in rats. Experimental Brain Research, 239(2), 591. https://doi.org/10.1007/s00221-020-06012-5
105. Tassone, A., Meringolo, M., Ponterio, G., Bonsi, P., Schirinzi, T., & Martella, G. (2023). Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson [Review of Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson]. International Journal of Molecular Sciences, 24(8), 7221. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms24087221
106. Tong, H., Yang, T., Xu, S., Li, X., Liu, L., Zhou, G., Yang, S., Yin, S., Li, X., & Li, S. (2024). Huntington’s Disease: Complex Pathogenesis and Therapeutic Strategies. International Journal of Molecular Sciences, 25(7), 3845. https://doi.org/10.3390/ijms25073845
107. Tramutola, A., Bakels, H. S., Perrone, F., Nottia, M. D., Mazza, T., Abruzzese, M. P., Zoccola, M., Pagnotta, S., Carrozzo, R., Bot, S. T. de, Perluigi, M., Roon‐Mom, W. M. C. van, & Squitieri, F. (2023). GLUT-1 changes in paediatric Huntington disease brain cortex and fibroblasts: an observational case-control study. EBioMedicine, 97, 104849. https://doi.org/10.1016/ j.ebiom.2023.104849
108. Tsunemi, T., Ashe, T. D., Morrison, B. E., Soriano, K., Au, J., Vázquez‐Roque, R. A., Lazarowski, E. R., Damian, V. A., Masliah, E., & Spada, A. R. L. (2012). PGC-1α Rescues Huntington’s Disease Proteotoxicity by Preventing Oxidative Stress and Promoting TFEB Function. Science Translational Medicine, 4(142). https://doi.org/10.1126/scitranslmed.3003799
109. Tucci, P., Lattanzi, R., Severini, C., & Saso, L. (2022). Nrf2 Pathway in Huntington’s Disease (HD): What Is Its Role? [Review of Nrf2 Pathway in Huntington’s Disease (HD): What Is Its Role?]. International Journal of Molecular Sciences, 23(23), 15272. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms232315272
110. Tung, C., Huang, P.-Y., Chan, S. C., Cheng, P., & Yang, S. (2021). The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington’s disease [Review of The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington’s disease]. Journal of Biomedical Science, 28(1). BioMed Central. https://doi.org/10.1186/s12929-021-00755-1
111. Ugbaja, R. N., James, A. S., Ugwor, E. I., Akamo, A. J., Thomas, F. C., & Kosoko, A. M. (2021). Lycopene suppresses palmitic acid-induced brain oxidative stress, hyperactivity of some neuro-signalling enzymes, and inflammation in female Wistar rat. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94518-5
112. Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology, 98, 10. https://doi.org/10.1016 /j.tifs.2020.01.032
113. Vassal, M., Martins, F., Monteiro, B., Tambaro, S., Martinez-Murillo, R., & Rebelo, S. (2024). Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research [Review of Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research]. Molecular Neurobiology. Springer Science+Business Media. https://doi.org/10.1007/s12035-024-04246-w
114. Vega, O., & Cepeda, C. (2021). Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington’s disease symptoms [Review of Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington’s disease symptoms]. Reviews in the Neurosciences, 32(8), 871. De Gruyter. https://doi.org/10. 1515/revneuro-2021-0013
115. Villegas, L. D., Nørremølle, A., Freude, K., & Vilhardt, F. (2021). Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington’s Disease? [Review of Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington’s Disease?]. Frontiers in Aging Neuroscience, 13. Frontiers Media. https://doi.org/10.3389/fnagi.2021.736734
116. Vishwas, S., Gulati, M., Kapoor, B., Gupta, S., Singh, S. K., Awasthi, A., Khan, A., Goyal, A., Bansal, A. K., Baishnab, S., Singh, T. G., Arora, S., Porwal, O., Kumar, A., & Kumar, V. (2020). Expanding the Arsenal Against Huntington’s Disease-Herbal Drugs and Their Nanoformulations [Review of Expanding the Arsenal Against Huntington’s Disease-Herbal Drugs and Their Nanoformulations]. Current Neuropharmacology, 19(7), 957. Bentham Science Publishers. https://doi.org/10.2174/1570159x18666201109090824
117. Wang, G., & Bieberich, E. (2018). Sphingolipids in neurodegeneration (with focus on ceramide and S1P) [Review of Sphingolipids in neurodegeneration (with focus on ceramide and S1P)]. Advances in Biological Regulation, 70, 51. Elsevier BV. https://doi.org/10.1016/j. jbior.2018.09.013
118. Wang, H., Liu, S., Sun, Y., Chen, C., Hu, Z., Li, Q., Long, J., Qian, Y., Liang, J., Yu, C., Yang, S., Lin, M., Liu, X., Wang, H., Yu, J., Fan, Y., Tan, Y., Yang, Y., Chen, N., & Ai, Q. (2024). Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases [Review of Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases]. Ageing Research Reviews, 101, 102472. Elsevier BV. https://doi.org/10.1016/j.arr.2024.102472
119. Wang, X., Qiu, S., Zhang, A., Miao, J., Sun, H., Yan, G., Wu, F., & Wang, X. (2020). Neuroprotective Effects, Biological Activities and Therapeutic Potential of Phytochemicals: A Comprehensive Review [Review of Neuroprotective Effects, Biological Activities and Therapeutic Potential of Phytochemicals: A Comprehensive Review]. American Journal of Medicinal Chemistry, 1. https://doi.org/10.31487/j.ajmc.2020.01.04
120. Wang, Z., He, C., & Shi, J. (2019). Natural Products for the Treatment of Neurodegenerative Diseases [Review of Natural Products for the Treatment of Neurodegenerative Diseases]. Current Medicinal Chemistry, 27(34), 5790. Bentham Science Publishers. https://doi.org/10.2174/0929867326666190527120614
121. Wu, X., Yan, Y., & Zhang, Q. (2021). Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury [Review of Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury]. Journal of Inflammation Research, 5713. Dove Medical Press. https://doi.org/10.2147/jir.s329864
122. Xia, N., Madore, V., Albalakhi, A., Lin, S., Stimpson, T. V., Xu, Y., Schwarzschild, M. A., & Bakshi, R. (2023). Microglia-dependent neuroprotective effects of 4-octyl itaconate against rotenone-and MPP+-induced neurotoxicity in Parkinson’s disease. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42813-8
123. Xu, B., Bai, L., Chen, L., Tong, R., Feng, Y., & Shi, J. (2022). Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway [Review of Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway]. Frontiers in Pharmacology, 13. Frontiers Media. https://doi.org/10.3389/fphar.2022.1036506
124. Yu-Taeger, L., Novati, A., Weber, J. J., Singer, E., Pabst, A.-S., Cheng, F., Saft, C., Koenig, J., Ellrichmann, G., Heikkinen, T., Pouladi, M. A., Rieß, O., & Nguyen, H. P. (2022). Evidences for Mutant Huntingtin Inducing Musculoskeletal and Brain Growth Impairments via Disturbing Testosterone Biosynthesis in Male Huntington Disease Animals. Cells, 11(23), 3779. https://doi.org/10.3390/cells11233779
125. Zhang, Q., Li, T., Xu, M., Islam, B., & Wang, J. (2024). Application of Optogenetics in Neurodegenerative Diseases [Review of Application of Optogenetics in Neurodegenerative Diseases]. Cellular and Molecular Neurobiology, 44(1). Springer Science+Business Media. https://doi.org/1

