COMPREHENSIVE STUDY ON PHARMACOLOGICAL BENEFITS OF LYCOPENE IN THE PREVENTION AND TREATMENT OF AGING AND AGE-RELATED AILMENTS

Main Article Content

Maharabam Anandi Devi

Keywords

Lycopene, Pharmacological, Aging, Neurodegenerative Disease, Therapeutics

Abstract

The process of ageing and associated chronic diseases are significant contributors to global death rates. The incidence of these disorders is steadily and universally rising. Given the continuous increase in the worldwide burden, it is essential to explore alternate approaches to conventional treatment to mitigate the risk of age-related disorders. Lycopene, a carotenoid pigment, is abundantly found in several fruits and vegetables, including tomatoes, grapefruits, and watermelons. It possesses a distinctive molecular configuration that imparts robust antioxidant characteristics. This nutraceutical exhibits various anti-aging attributes, including the mitigation of age biomarkers and the improvement of some chronic illnesses. A thorough review to assess the efficacy of lycopene in mitigating ageing progression and age-related chronic disorders has yet to be conducted. This review analyses prior pre-clinical, clinical, and epidemiological studies on lycopene to assess its efficacy in addressing age-related disorders and its function as a calorie restriction mimic. Research has shown that diets rich in lycopene can aid in the prevention or reduction of age-related illnesses. This review indicates that lycopene may be employed in therapeutic contexts to enhance human health and alleviate the onset of ageing and age-related disorders, as supported by current findings.

Abstract 113 | Pdf Downloads 2

References

1. Abdul-Hamid, M., & Salah, M. (2013). Lycopene reduces deltamethrin effects induced thyroid toxicity and DNA damage in albino rats. The Journal of Basic & Applied Zoology, 66(4), 155–163. https://doi.org/10.1016/j.jobaz.2013.08.001
2. Albrahim, T., & Alonazi, M. A. (2021). Lycopene corrects metabolic syndrome and liver injury induced by high fat diet in obese rats through antioxidant, anti-inflammatory, antifibrotic pathways. Biomedicine & Pharmacotherapy, 141, 111831. https://doi.org/10.1016/j.biopha.2021.111831
3. Amir, H., Karas, M., Giat, J., Danilenko, M., Levy, R., Yermiahu, T., Levy, J., & Sharoni, Y. (1999). Lycopene and 1,25-dihydroxyvitamin d3 cooperate in the inhibition of cell cycle progression and induction of differentiation in hl-60 leukemic cells. Nutrition and Cancer, 33(1), 105–112. https://doi.org/10.1080/01635589909514756
4. Bhuvaneswari, V., & Nagini, S. (2005). Lycopene: A review of its potential as an anticancer agent. Current Medicinal Chemistry – Anti-Cancer Agents, 5(6), 627–635. https://doi.org/10.2174/156801105774574667
5. Bhuvaneswari, V., Velmurugan, B., & Nagini, S. (2002). Induction of glutathione-dependent hepatic biotransformation enzymes by lycopene in the hamster cheek pouch carcinogenesis model. Journal of Biochemistry, Molecular Biology, and Biophysics, 6(4), 257–260. https://doi.org/10.1080/10258140290030843
6. Blackburn, E. H. (1991). Structure and function of telomeres. Nature, 350(6319), 569–573. https://doi.org/10.1038/350569a0
7. Blackburn, E. H. (2005). Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Letters, 579(4), 859–862. https://doi.org/10.1016/j.febslet.2004.11.036
8. Blanpain, C., & Fuchs, E. (2006). Epidermal stem cells of the skin. Annual Review of Cell and Developmental Biology, 22(1), 339–373. https://doi.org/10.1146/annurev.cellbio.22.010305.104357
9. Boileau, T. W. M., Liao, Z., Kim, S., Lemeshow, S., Erdman, J. J. W., & Clinton, S. K. (2003). Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. Journal of the National Cancer Institute, 95(21), 1578–1586. https://doi.org/10.1093/jnci/djg081
10. Boyacioglu, M., Kum, C., Sekkin, S., Yalinkilinc, H. S., Avci, H., Epikmen, E. T., & Karademir, U. (2016). The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats. Clinical Nutrition, 35(2), 428–435. https://doi.org/10.1016/j.clnu.2015.03.006
11. Cao, Z., Wang, P., Gao, X., Shao, B., Zhao, S., & Li, Y. (2019). Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. Journal of Inorganic Biochemistry, 193, 143–151. https://doi.org/10.1016/j.jinorgbio.2019.01.017
12. Cataño, J., Trujillo, C., Caicedo, J., Bravo-Balado, A., Robledo, D., Mariño-Alvarez, A., Pedraza, A., Arcila, M., & Plata, M. (2018). Efficacy of lycopene intake in primary prevention of prostate cancer: A systematic review of the literature and meta-analysis. Archivos Españoles de Urología, 71, 187–197.
13. Celik, H., Kucukler, S., Ozdemir, S., Comakli, S., Gur, C., Kandemir, F. M., & Yardim, A. (2020). Lycopene protects against central and peripheral neuropathy by inhibiting oxaliplatin-induced ATF-6 pathway, apoptosis, inflammation and oxidative stress in brains and sciatic tissues of rats. Neurotoxicology, 80, 29 40. https://doi.org/10.1016/j.neuro.2020.06.005
14. Chernyshova, M. P., Pristenskiy, D. V., Lozbiakova, M. V., Chalyk, N. E., Bandaletova, T. Y., & Petyaev, I. M. (2019). Systemic and skin-targeting beneficial effects of lycopene-enriched ice cream: A pilot study. Journal of Dairy Science, 102(1), 14–25. https://doi.org/10.3168/jds.2018-15282
15. Dai, C., Tang, S., Deng, S., Zhang, S., Zhou, Y., Velkov, T., Li, J., & Xiao, X. (2015). Lycopene attenuats colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrobial Agents and Chemotherapy, 59(1), 579–585. https://doi.org/10.1128/aac.03925-14
16. Davies, D. F., & Shock, N. W. (1950). Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. The Journal of Clinical Investigation, 29(5), 496–507. https://doi.org/10.1172/jci102286
17. Dogukan, A., Tuzcu, M., Agca, C. A., Gencoglu, H., Sahin, N., Onderci, M., Ozercan, I. H., Ilhan, N., Kucuk, O., & Sahin, K. (2011). A tomato lycopene complex protects the kidney from cisplatin-induced injury via affecting oxidative stress as well as Bax, Bcl-2, and HSPs expression. Nutrition and Cancer, 63(3), 427–434. https://doi.org/10.1080/01635581.2011.535958
18. El-Gerbed, M. S. (2014). Protective effect of lycopene on deltamethrin-induced histological and ultrastructural changes in kidney tissue of rats. Toxicology and Industrial Health, 30(2), 160–173. https://doi.org/10.1177/0748233712448115
19. Ellis, A. C., Dudenbostel, T., & Crowe-White, K. (2019). Watermelon juice: A novel functional food to increase circulating lycopene in older adult women. Plant Foods for Human Nutrition, 74(2), 200–203. https://doi.org/10.1007/s11130-019-00719-9
20. Engelhard, Y. N., Gazer, B., & Paran, E. (2006). Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: A double-blind, placebo-controlled pilot study. American Heart Journal, 151(1), 100.e106–100.e101. https://doi.org/10.1016/j.ahj.2005.05.008
21. Erman, F., Tuzcu, M., Orhan, C., Sahin, N., & Sahin, K. (2014). Effect of lycopene against cisplatin-induced acute renal injury in rats: Organic anion and cation transporters evaluation. Biological Trace Element Research, 158(1), 90–95. https://doi.org/10.1007/s12011-014-9914-x
22. Feng, C., Luo, T., Zhang, S., Liu, K., Zhang, Y., Luo, Y., & Ge, P. (2016). Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways. Molecular Medicine Reports, 13(5), 4205–4214. https://doi.org/10.3892/mmr.2016.5056
23. Fu, L. J., Ding, Y. B., Wu, L. X., Wen, C. J., Qu, Q., Zhang, X., & Zhou, H. H. (2014). The effects of lycopene on the methylation of the GSTP1 promoter and global methylation in prostatic cancer cell lines PC3 and LNCaP. International Journal of Endocrinology, 2014, 620165. https://doi.org/10.1155/2014/620165
24. Gann, P. H., & Khachik, F. (2003). Tomatoes or lycopene versus prostate cancer: Is evolution anti-reductionist? Journal of the National Cancer Institute, 95(21), 1563–1565. https://doi.org/10.1093/jnci/djg112
25. Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., Li, Q., Kong, M., Han, W., Sun, G., Yang, X., Yang, N., & Hao, L. (2019). The association between intake of dietary lycopene and other carotenoids and gestational diabetes mellitus risk during mid-trimester: A cross-sectional study. British Journal of Nutrition, 121(12), 1405–1412. https://doi.org/10.1017/S0007114519000606
26. Gong, X., Marisiddaiah, R., Zaripheh, S., Wiener, D., & Rubin, L. P. (2016). Mitochondrial β-carotene 9′,10′ oxygenase modulates prostate cancer growth via NF-κB inhibition: A lycopene-independent function. Molecular Cancer Research, 14(10), 966–975. https://doi.org/10.1158/1541-7786.Mcr-16-0075
27. Goulet, E. D. B., Hassaine, A., Dionne, I. J., Gaudreau, P., Khalil, A., Fulop, T., Shatenstein, B., Tessier, D., & Morais, J. A. (2009). Frailty in the elderly is associated with insulin resistance of glucose metabolism in the postabsorptive state only in the presence of increased abdominal fat. Experimental Gerontology, 44(11), 740–744. https://doi.org/10.1016/j.exger.2009.08.008
28. Gouranton, E., Thabuis, C., Riollet, C., Malezet-Desmoulins, C., El Yazidi, C., Amiot, M. J., Borel, P., & Landrier, J. F. (2011). Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. The Journal of Nutritional Biochemistry, 22(7), 642–648. https://doi.org/10.1016/j.jnutbio.2010.04.016
29. Graff, R. E., Pettersson, A., Lis, R. T., Ahearn, T. U., Markt, S. C., Wilson, K. M., Rider, J. R., Fiorentino, M., Finn, S., Kenfield, S. A., Loda, M., Giovannucci, E. L., Rosner, B., & Mucci, L. A. (2016). Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. The American Journal of Clinical Nutrition, 103(3), 851–860. https://doi.org/10.3945/ajcn.115.118703
30. Grether-Beck, S., Marini, A., Jaenicke, T., Stahl, W., & Krutmann, J. (2017). Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: Results from a double-blinded, placebo-controlled, crossover study. British Journal of Dermatology, 176(5), 1231–1240. https://doi.org/10.1111/bjd.15080
31. Guijas, C., Montenegro-Burke, J. R., Cintron-Colon, R., Domingo-Almenara, X., Sanchez-Alavez, M., Aguirre, C. A., Shankar, K., Majumder, E. L.-W., Billings, E., Conti, B., & Siuzdak, G. (2020). Metabolic adaptation to calorie restriction. Science Signaling, 13(648), eabb2490. https://doi.org/10.1126/scisignal.abb2490
32. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7
33. J., Miller, B., Balbuena, E., & Eroglu, A. (2020). Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants (Basel), 9(7), 643. https://doi.org/10.3390/antiox9070643
34. Jeong, Y., Lim, J. W., & Kim, H. (2019). Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutrients, 11(4), 762. https://doi.org/10.3390/nu11040762
35. Jhou, B.-Y., Song, T.-Y., Lee, I., Hu, M.-L., & Yang, N.-C. (2017). Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by downregulation of NADPH oxidase 4 protein expression. Journal of Agricultural and Food Chemistry, 65(32), 6893–6903. https://doi.org/10.1021/acs.jafc.7b03036
36. Jiang, H., Schiffer, E., Song, Z., Wang, J., Zürbig, P., Thedieck, K., Moes, S., Bantel, H., Saal, N., Jantos, J., Brecht, M., Jenö, P., Hall, M. N., Hager, K., Manns, M. P., Hecker, H., Ganser, A., Döhner, K., Bartke, A., … Rudolph, K. L. (2008). Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences, 105(32), 11299–11304. https://doi.org/10.1073/pnas.0801457105
37. Jiang, L. N., Liu, Y. B., & Li, B. H. (2018). Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian Journal of Andrology, 21(1), 80–85. https://doi.org/10.4103/aja.aja_70_18
38. Johnson, R. K., Appel, L. J., Brands, M., Howard, B. V., Lefevre, M., Lustig, R. H., Sacks, F., Steffen, L. M., & Wylie-Rosett, J. (2009). Dietary sugars intake and cardiovascular health. Circulation, 120(11), 1011–1020. https://doi.org/10.1161/CIRCULATIONAHA.109.192627
39. Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A., & Passeron, T. (2017). The skin aging exposome. Journal of Dermatological Science, 85(3), 152–161. https://doi.org/10.1016/j.jdermsci.2016.09.015
40. Kucuk, O., Sarkar, F. H., Djuric, Z., Sakr, W., Pollak, M. N., Khachik, F., Banerjee, M., Bertram, J. S., & Wood, D. P., Jr. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Experimental Biology and Medicine, 227(10), 881–885. https://doi.org/10.1177/153537020222701007
41. Lane, M. A., Ingram, D. K., & Roth, G. S. (1999). Calorie restriction in nonhuman primates: Effects on diabetes and cardiovascular disease risk. Toxicological Sciences, 52(suppl_1), 41–48. https://doi.org/10.1093/toxsci/52.suppl_1.41
42. Negri, R., Trinchese, G., Carbone, F., Caprio, M. G., Stanzione, G., di Scala, C., Micillo, T., Perna, F., Tarotto, L., Gelzo, M., Cavaliere, G., Spagnuolo, M. I., Corso, G., Mattace Raso, G., Matarese, G., Mollica, M. P., Greco, L., & Iorio, R. (2020). Randomised clinical trial: Calorie restriction regimen with tomato juice supplementation ameliorates oxidative stress and preserves a proper immune surveillance modulating mitochondrial bioenergetics of T-lymphocytes in obese children affected by non-alcoholic fatty liver disease (NAFLD). Journal of Clinical Medicine, 9(1), 141. https://doi.org/10.3390/jcm9010141
43. Neyestani, T. R., Shariatzadeh, N., Gharavi, A., Kalayi, A., & Khalaji, N. (2007a). The opposite associations of lycopene and body fat mass with humoral immunity in type 2 diabetes mellitus: A possible role in atherogenesis. Iranian Journal of Allergy, Asthma, and Immunology, 6(2), 79–87.
44. Ou, S., Fang, Y., Tang, H., Wu, T., Chen, L., Jiang, M., Zhou, L., Xu, J., & Guo, K. (2020). Lycopene protects neuroblastoma cells against oxidative damage via depression of ER stress. Journal of Food Science, 85(10), 3552–3561. https://doi.org/10.1111/1750-3841.15419
45. Przybylska, S. (2020). Lycopene – A bioactive carotenoid offering multiple health benefits: A review. International Journal of Food Science & Technology, 55(1), 11–32. https://doi.org/10.1111/ijfs.14260
46. Qiu, X., Yuan, Y., Vaishnav, A., Tessel, M. A., Nonn, L., & van Breemen, R. B. (2013). Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prevention Research, 6(5), 419–427. https://doi.org/10.1158/1940-6207.capr-12-0364
47. Quansah, D. Y., Ha, K., Jun, S., Kim, S.-A., Shin, S., Wie, G.-A., & Joung, H. (2017). Associations of dietary antioxidants and risk of type 2 diabetes: Data from the 2007–2012 Korea National Health and Nutrition Examination Survey. Molecules, 22(10), 1664. https://doi.org/10.3390/molecules22101664
48. Rao, A. V., & Rao, L. G. (2018). Lycopene and tomatoes in the prevention and Management of Other Human Diseases. In A. V. Rao, G. L. Young, & L. G. Rao (Eds.), Lycopene and tomatoes in human nutrition and health ( 1st ed., pp. 129–148). CRC Press. https://doi.org/10.1201/9781351110877
49. Safari, M. R. (2007). Effects of lycopene on the susceptibility of low-density lipoproteins to oxidative modification. Iranian Journal of Pharmaceutical Research, 6(3), 173–177. https://doi.org/10.1016/B978-0-12-801238-3.11281-4-3.11281-4
50. Sahin, K., Tuzcu, M., Sahin, N., Ali, S., & Kucuk, O. (2010). Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene. Food and Chemical Toxicology, 48(10), 2670–2674. https://doi.org/10.1016/j.fct.2010.06.038
51. Saini, R. K., Rengasamy, K. R. R., Mahomoodally, F. M., & Keum, Y.-S. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacological Research, 155, 104730. https://doi.org/10.1016/j.phrs.2020.104730
52. Sakamoto, H., Inakuma, T., Ishiguro, Y., Takayasu, J., & Nishino, H. (1998). Prevention of N-Methylnitrosourea-induced Colon carcinogenesis in F344 rats by lycopene and tomato juice rich in lycopene. Japanese Journal of Cancer Research, 89(10), 1003–1008. https://doi.org/10.1111/j.1349-7006.1998.tb00488.x
53. Sandhir, R., Mehrotra, A., & Kamboj, S. S. (2010). Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochemistry International, 57(5), 579–587. https://doi.org/10.1016/j.neuint.2010.07.005
54. Trumbo, P. R. (2005). Are there adverse effects of lycopene exposure? The Journal of
55. Uddin, M. J., Farjana, M., Moni, A., Hossain, K. S., Hannan, M. A., & Ha, H. (2021). Prospective pharmacological potential of resveratrol in delaying kidney aging. International Journal of Molecular Sciences, 22(15), 8258. https://www.mdpi.com/1422-0067/22/15/8258
56. Visioli, F., Riso, P., Grande, S., Galli, C., & Porrini, M. (2003). Protective activity of tomato products on in vivo markers of lipid oxidation. European Journal of Nutrition, 42(4), 201–206. https://doi.org/10.1007/s00394-003-0415-5
57. Walfisch, Y., Walfisch, S., Agbaria, R., Levy, J., & Sharoni, Y. (2003). Lycopene in serum, skin and adipose tissues after tomato-oleoresin supplementation in patients undergoing haemorrhoidectomy or peri-anal fistulotomy. British Journal of Nutrition, 90(4), 759–766. https://doi.org/10.1079/BJN2003955
58. Wang, C. J., Chou, M. Y., & Lin, J. K. (1989). Inhibition of growth and development of the transplantable C-6 glioma cells inoculated in rats by retinoids and carotenoids. Cancer Letters, 48(2), 135–142. https://doi.org/10.1016/0304-3835(89)90050-5
59. Wang, J., Suo, Y., Zhang, J., Zou, Q., Tan, X., Yuan, T., Liu, Z., & Liu, X. (2019). Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice. The Journal of Nutritional Biochemistry, 69, 63–72. https://doi.org/10.1016/j.jnutbio.2019.03.008
60. Xia, X., Chen, W., McDermott, J., & Han, J. J. (2017). Molecular and phenotypic biomarkers of aging. F1000Res, 6, 860. https://doi.org/10.12688/f1000research.10692.1 PubMedGoogle Scholar
61. Yang, H., Xu, Z., Liu, W., Deng, Y., & Xu, B. (2011). The protective role of Procyanidins and lycopene against mercuric chloride renal damage in rats. Biomedical and Environmental Sciences, 24(5), 550–559. https://doi.org/10.3967/0895-3988.2011.05.015
62. Zhou, Y., Wang, J., Cao, L., Shi, M., Liu, H., Zhao, Y., & Xia, Y. (2022). Fruit and vegetable consumption and cognitive disorders in older adults: A meta-analysis of observational studies. Frontiers in Nutrition, 9, 871061. https://doi.org/10.3389/fnut.2022.871061