IMMUNOPROTEASOME INHIBITION AS AN EMERGING THERAPEUTIC STRATEGY IN INFLAMMATORY BOWEL DISEASE

Main Article Content

Krishna Thakkar
Sonika Maheshwari
Dr. Nishkruti R. Mehta
Dr. Pragnesh Patani

Keywords

Inflammatory Bowel Disease, Proteasome Inhibition, NF-κB, Immunoproteasome, Targeted Therapy, Intestinal Inflammation

Abstract

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a chronic, relapsing disorder of the gastrointestinal tract with a rapidly rising global prevalence. Despite significant advances in immunomodulators, biologics, and small-molecule therapies, current treatments remain constrained by limited response rates, secondary loss of efficacy, and adverse effects. Increasing evidence implicates genetic susceptibility, impaired mucosal barrier function, gut microbiota dysbiosis, and immune dysregulation—particularly aberrant nuclear factor kappa B (NF-κB) activation—in driving chronic intestinal inflammation. The proteasome, a key regulator of intracellular protein degradation, directly controls NF-κB signaling and other inflammatory pathways. Recent preclinical studies demonstrate that proteasome inhibition, especially selective targeting of the immunoproteasome, effectively suppresses pro-inflammatory cytokine expression, attenuates colitis severity, and promotes mucosal healing, while offering greater specificity and reduced systemic toxicity compared to conventional inhibitors. However, challenges such as systemic adverse effects, epithelial barrier disruption, and limited clinical validation remain significant barriers to translation. Emerging strategies, including nanoparticle-mediated targeted delivery, subunit-specific inhibitors, and rational combination with existing immunomodulators or biologics, are under active exploration to optimize efficacy and safety. Furthermore, biomarker-guided patient stratification and long-term safety studies are essential to establish therapeutic viability. Collectively, proteasome inhibition represents a promising and mechanistically rational approach to IBD management, with the potential to overcome limitations of existing therapies. Advancing selective, locally targeted, and clinically validated inhibitors could position immunoproteasome modulation as a transformative strategy in refractory IBD treatment.

Abstract 13 | PDF Downloads 2

References

1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78. doi: 10.1016/S0140-6736(17)32448-0.
2. Zhang Z, Du N, Xu C, et al. Global, regional, and national burden of inflammatory bowel disease in persons aged 60–89 years from 1992 to 2021. BMC Gastroenterol. 2025;25(1):425. doi: 10.1186/s12876-025-04042-3.
3. Lamb CA, Titterton C, Banerjee R, Gomberg A, Rubin DT, Hart AL. Inflammatory bowel disease has no borders: engaging patients as partners to deliver global, equitable and holistic health care. Lancet. 2024;404(10451):414–7. doi: 10.1016/S0140-6736(24)00983-8.
4. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389:1756–70. doi: 10.1016/S0140-6736(16)32126-2.
5. Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, et al. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc. 2020;95:1287–307. doi: 10.1111/brv.12608.
6. Cai Z, Wang S, Li J. Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne). 2021;8:765474. doi: 10.3389/fmed.2021.765474.
7. Nielsen OH, Ainsworth MA. Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med. 2013;369:754–62. doi: 10.1056/NEJMct1209614.
8. Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev. 2014;13:24–30. doi: 10.1016/j.autrev.2013.06.002.
9. Sakai S, Nishida A, Ohno M, Inatomi O, Bamba S, Sugimoto M, et al. Ameliorating effects of bortezomib, a proteasome inhibitor, on development of dextran sulfate sodium-induced murine colitis. J Clin Biochem Nutr. 2018;63(3):217–23. doi: 10.3164/jcbn.18-42.
10. Scalavino V, Piccinno E, Valentini AM, Mastronardi M, Armentano R, Giannelli G, et al. A novel mechanism of immunoproteasome regulation via mir-369-3p in intestinal inflammatory response. Int J Mol Sci. 2022;23(22):13771. doi: 10.3390/ijms232213771.
11. Basler M, Lindström M, LaStant J, Bradshaw JM, Owens TD, Schmidt C, et al. Co-inhibition of immunoproteasome subunits lmp2 and lmp7 is required to block autoimmunity. EMBO Rep. 2018;19(12). doi: 10.15252/embr.201846512.
12. Aguilera M, Melgar S. Microbial Neuro-Immune Interactions and the Pathophysiology of IBD. In: InTech; 2016. doi: 10.5772/64832.
13. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91–9. doi: 10.3748/wjg.v20.i1.91.
14. Xu XR, Liu CQ, Feng BS, Liu ZJ. Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2014;20(12):3255–64. doi: 10.3748/wjg.v20.i12.3255.
15. Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci. 2023;24(3):2696. doi: 10.3390/ijms24032696.
16. Cominelli F, Arseneau KO, Rodriguez-Palacios A, Pizarro TT. Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn's Disease-Like Ileitis: What is the Right Model?. Cell Mol Gastroenterol Hepatol. 2017;4(1):19–32. doi: 10.1016/j.jcmgh.2017.02.010.
17. Du Y. Role of epigenetic modifications and aging in inflammatory bowel disease. Mol Ecol Funct Genomics. 2023;2(4). doi: 10.1002/mef2.63.
18. Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol. 2022;13:1026511. doi: 10.3389/fimmu.2022.1026511.
19. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113–20. doi: 10.2147/JIR.S65979.
20. Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23(33):6016–29. doi: 10.3748/wjg.v23.i33.6016.
21. Anbazhagan AN, Priyamvada S, Alrefai WA, Dudeja PK. Pathophysiology of IBD associated diarrhea. Tissue Barriers. 2018;6(2):e1463897. doi: 10.1080/21688370.2018.1463897.
22. Zheng M, Han R, Yuan Y, Xing Y, Zhang W, Sun Z, et al. The role of Akkermansia muciniphila in inflammatory bowel disease: Current knowledge and perspectives. Front Immunol. 2023;13:1089600. doi: 10.3389/fimmu.2022.1089600.
23. Tahir MH, Jamil HMA, Lodhi T, Mehdi M, Ali M, Ullah I. Effect of gut microbiome alteration in inflammatory bowel disease: Microbiome-based therapy for irritable bowel syndrome. Int J Health Sci. 2023;7(S1):1713–22. doi: 10.53730/ijhs.v7nS1.14405.
24. Van der Sloot KWJ, Weersma RK, Alizadeh BZ, Dijkstra G. Identification of Environmental Risk Factors Associated With the Development of Inflammatory Bowel Disease. J Crohns Colitis. 2020;14(12):1662–71. doi: 10.1093/ecco-jcc/jjaa114.
25. Mak JWY, Lo ATW, Ng SC. Early life factors, diet and microbiome, and risk of inflammatory bowel disease. J Can Assoc Gastroenterol. 2025;8(Suppl 2):S44–50. doi: 10.1093/jcag/gwae039.
26. El-Salhy M, Hausken T. The role of the neuropeptide Y (NPY) family in the pathophysiology of inflammatory bowel disease (IBD). Neuropeptides. 2016;55:137–44. doi: 10.1016/j.npep.2015.09.005.
27. Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med. 2017;282(1):46–63. doi: 10.1111/joim.12611.
28. Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol. 2002;168(10):5342–52. doi: 10.4049/jimmunol.168.10.5342.
29. Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology. 2025;33(2):759–65. doi: 10.1007/s10787-024-01607-8.
30. Ghelani H, Adrian TE, Ho SB, Akhras J, Azar AJ, Jan RK. Study protocol for a pilot randomized, double-blind, placebo-controlled trial to investigate the anti-inflammatory effects of Frondanol in adults with inflammatory bowel disease. Contemp Clin Trials Commun. 2022;31:101046. doi: 10.1016/j.conctc.2022.101046.
31. Mukherjee T, et al. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal. 2024;17(862):adh1641. doi: 10.1126/scisignal.adh1641.
32. Jiang W, Zhao Y, Han M, Xu J, Chen K, Liang Y, et al. N4BP3 facilitates NOD2-MAPK/NF-κB pathway in inflammatory bowel disease through mediating K63-linked RIPK2 ubiquitination. Cell Death Discov. 2024;10(1):440. doi: 10.1038/s41420-024-02213-x.
33. Buchheister S, Buettner M, Basic M, Noack A, Breves G, Buchen B, et al. CD14 plays a protective role in experimental inflammatory bowel disease by enhancing intestinal barrier function. Am J Pathol. 2017;187(5):1106–12. doi: 10.1016/j.ajpath.2017.01.012.
34. Goretsky T, Dirisina R, Sinh P, Mittal N, Managlia E, Williams DB, et al. p53 mediates TNF-induced epithelial cell apoptosis in IBD. Am J Pathol. 2012;181(4):1306–15. doi: 10.1016/j.ajpath.2012.06.016.
35. Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 2019;25(1):33–46. doi: 10.1016/j.molmed.2018.10.006.
36. Irrazabal T, Thakur BK, Croitoru K, Martin A. Preventing colitis-associated colon cancer with antioxidants: a systematic review. Cell Mol Gastroenterol Hepatol. 2021;11(4):1177–97. doi: 10.1016/j.jcmgh.2020.12.013.
37. Lloyd K, Papoutsopoulou S, Smith E, Stegmaier P, Bergey F, Morris L, et al.; SysmedIBD Consortium. Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease. Dis Model Mech. 2020;13(11):dmm044040. doi: 10.1242/dmm.044040.
38. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis. 2006;12(12):1152–61. doi: 10.1097/01.mib.0000235830.94057.c6.
39. Kim SW, Kim HM, Yang KM, Kim SA, Kim SK, An MJ, et al. Bifidobacterium lactis inhibits NF-kappaB in intestinal epithelial cells and prevents acute colitis and colitis-associated colon cancer in mice. Inflamm Bowel Dis. 2010;16(9):1514–25. doi: 10.1002/ibd.21262.
40. Cuzzocrea S, Ianaro A, Wayman NS, Mazzon E, Pisano B, Dugo L, et al. The cyclopentenone prostaglandin 15-deoxy-delta(12,14)-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat. Br J Pharmacol. 2003;138(4):678–85. doi: 10.1038/sj.bjp.0705077.
41. Tanaka K. Proteasomes: structure and biology. J Biochem. 1998;123(2):195–204. doi: 10.1093/oxfordjournals.jbchem.a021922.
42. Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics. 2011;10(5):R110.006924. doi: 10.1074/mcp.M110.006924.
43. Xie Y. Structure, assembly and homeostatic regulation of the 26S proteasome. J Mol Cell Biol. 2010;2(6):308–17. doi: 10.1093/jmcb/mjq030.
44. Saeki Y. Ubiquitin recognition by the proteasome. J Biochem. 2017;161(2):113–24. doi: 10.1093/jb/mvw091.
45. Li J, Powell SR, Wang X. Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J. 2011;25(3):883–93. doi: 10.1096/fj.10-160895.
46. Gustafsson L, Aits S, Onnerfjord P, Trulsson M, Storm P, Svanborg C. Changes in proteasome structure and function caused by HAMLET in tumor cells. PLoS One. 2009;4(4):e5229. doi: 10.1371/journal.pone.0005229.
47. Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem. 2006;281(39):29228–35. doi: 10.1074/jbc.M602629200.
48. Haller D, Jobin C. Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr. 2004;38(2):123–36. doi: 10.1097/00005176-200402000-00004.
49. Lu Q, Yang MF, Liang YJ, Xu J, Xu HM, Nie YQ, et al. Immunology of inflammatory bowel disease: molecular mechanisms and therapeutics. J Inflamm Res. 2022;15:1825–44. doi: 10.2147/JIR.S353038.
50. Wang X, Chemmama IE, Yu C, Huszagh A, Xu Y, Viner R, et al. The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem. 2017;292(39):16310–20. doi: 10.1074/jbc.M117.803619.
51. Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, et al. Monocyte chemotactic protein 1-induced protein 1 is highly expressed in inflammatory bowel disease and negatively regulates neutrophil activities. Mediators Inflamm. 2020;2020:8812020. doi: 10.1155/2020/8812020.
52. Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, et al. Restore intestinal barrier integrity: an approach for inflammatory bowel disease therapy. J Inflamm Res. 2024;17:5389–413. doi: 10.2147/JIR.S470520.
53. Inoue S, Nakase H, Matsuura M, Mikami S, Ueno S, Uza N, et al. The effect of proteasome inhibitor MG132 on experimental inflammatory bowel disease. Clin Exp Immunol. 2009;156(1):172–82. doi: 10.1111/j.1365-2249.2008.03872.x.
54. Pérez-Jeldres T, Reyes-Pérez P, Gonzalez-Hormazabal P, Avendano C, Segovia Melero R, Azocar L, et al. Prediction of extraintestinal manifestations in inflammatory bowel disease using clinical and genetic variables with machine learning in a Latin IBD group. Int J Mol Sci. 2025;26(12):5741. doi: 10.3390/ijms26125741.
55. Chen R, Tie Y, Lu J, Li L, Zeng Z, Chen M, et al. Tripartite motif family proteins in inflammatory bowel disease: mechanisms and potential for interventions. Cell Prolif. 2022;55(5):e13222. doi: 10.1111/cpr.13222.
56. Kumar A, Smith PJ. Horizon scanning: new and future therapies in the management of inflammatory bowel disease. eGastroenterology. 2023;1:e100012. doi: 10.1136/egastro-2023-100012.
57. Nakase H. Optimizing the use of current treatments and emerging therapeutic approaches to achieve therapeutic success in patients with inflammatory bowel disease. Gut Liver. 2020;14(1):7–19. doi: 10.5009/gnl18203.
58. Neurath MF, Becker C, Barbulescu K. Role of NF-kappaB in immune and inflammatory responses in the gut. Gut. 1998;43(6):856–60. doi: 10.1136/gut.43.6.856.
59. Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol. 2010;185(1):634–41. doi: 10.4049/jimmunol.0903182.
60. Mancuso F, Di Chio C, Di Matteo F, Smaldone G, Iraci N, Giofrè SV. Recent advances in the development of immunoproteasome inhibitors as anti-cancer agents: the past 5 years. Molecules. 2025;30(3):755. doi: 10.3390/molecules30030755.
61. Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, et al. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol. 2004;22(11):2108–21. doi: 10.1200/JCO.2004.02.106.
62. Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, et al. Local stabilization of hypoxia-inducible factor-1α controls intestinal inflammation via enhanced gut barrier function and immune regulation. Front Immunol. 2021;11:609689. doi: 10.3389/fimmu.2020.609689.
63. Al-Bawardy B, Shivashankar R, Proctor DD. Novel and emerging therapies for inflammatory bowel disease. Front Pharmacol. 2021;12:651415. doi: 10.3389/fphar.2021.651415.
64. Liu Z, Yuan Y, Zhao Y, Liu Z, Ding L, Xu Y, et al. Ubiquitin-specific protease 25 ameliorates ulcerative colitis by restraining proteasomal degradation of STAT3. Cell Death Dis. 2025;16(1):73. doi: 10.1038/s41419-024-07315-z.
65. Hu LH, Wu ZY, Wu YY, Chen H, Zhang JX. Bortezomib protects against dextran sulfate sodium-induced ulcerative colitis in mice by inhibiting nuclear factor-κB activation. Mol Med Rep. 2017;16(4):4715–22. doi: 10.3892/mmr.2017.6524.
66. Shibao T, Okuda K, Shimomura A, Suzuki K, Ota M, Hibi T, et al. Calcitonin gene-related peptide β suppresses the pathogenesis of ulcerative colitis by regulating immunoproteasome activity. Sci Rep. 2025;15(1):14892. doi: 10.1038/s41598-025-91933-w.
67. Oliveri F, Bongiovanni D, Conti F, Rizzo F, Clemente A, Martino M, et al. Immunoproteasome inhibition impairs Th17 differentiation but preserves regulatory T cell function in experimental colitis. Int J Mol Sci. 2025;26(3):1210. doi: 10.3390/ijms26031210.
68. Moallemian R, Behnia F, Ghasemi R, Safari F, Shakiba S, Farrokhi N, et al. Immunoproteasome inhibitor DPLG3 attenuates experimental colitis via modulation of immune cell infiltration and cytokine production. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165924. doi: 10.1016/j.bbadis.2020.165924.
69. Lee Y, Park S, Kim J, Kwon H, Cho J, Jung J, et al. Inhibition of immunoproteasome attenuates NLRP3 inflammasome activation in a dextran sulfate sodium-induced colitis model. Cells. 2024;13(8):675. doi: 10.3390/cells13080675.
70. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest. 1998;101(5):1163–74. doi: 10.1172/JCI992.
71. Elliott PJ, Ross JS. The proteasome: a new target for novel drug therapies. Am J Clin Pathol. 2001;116(5):637–46. doi: 10.1309/44HW-5YCJ-FLLP-3R56.
72. Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-based strategies for the management of autoimmunity and immune dysregulation in primary immunodeficiencies. J Allergy Clin Immunol Pract. 2016;4(6):1089–100. doi: 10.1016/j.jaip.2016.08.004.
73. Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des. 2013;19(22):4140–51. doi: 10.2174/1381612811319220018.
74. Hwang YJ, Nam SJ, Chun W, Kim SI, Park SC, Kang CD, Lee SJ. Anti-inflammatory effects of apocynin on dextran sulfate sodium-induced mouse colitis model. PLoS One. 2019;14(5):e0217642. doi: 10.1371/journal.pone.0217642.
75. Albornoz N, Bustamante H, Soza A, Burgos P. Cellular responses to proteasome inhibition: molecular mechanisms and beyond. Int J Mol Sci. 2019;20(14):3379. doi: 10.3390/ijms20143379.
76. Clemente A, Arques Mdel C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol. 2014;20(30):10305–15. doi: 10.3748/wjg.v20.i30.10305.
77. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi: 10.1038/s41392-024-01757-9.
78. Liu B, Liu T, Wang X, Zheng X, Wang H, Ma L. Effects of Guchang Capsule on dextran sulphate sodium-induced experimental ulcerative colitis in mice. Evid Based Complement Alternat Med. 2016;2016:3150651. doi: 10.1155/2016/3150651.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>