CENSORING AND ITS IMPACT ON KAPLAN–MEIER SURVIVAL ESTIMATES: INSIGHTS FROM A SIMULATION STUDY

Main Article Content

Dr. Hari Pal Singh
Dr. Rama Shankar
Dr. Ravi Shastri
Dr. B N Singh

Keywords

Survival analysis, Kaplan–Meier estimator, censoring, simulation, biostatistics.

Abstract

Background: Survival analysis is essential in medical research for studying time-to-event outcomes. The Kaplan–Meier (KM) estimator is widely used but its performance depends heavily on censoring. Objective: To examine the impact of varying levels of censoring (10%, 30%, 50%) on KM survival estimates using simulated data. Methods: A simulation study was conducted with 1,000 patients per dataset, assuming survival times followed an exponential distribution with a true median of 12 months. Random right censoring was introduced at three levels: low (10%), moderate (30%), and high (50%). Each scenario was replicated 1,000 times. Kaplan–Meier estimates of median survival were compared against the true value in terms of bias, precision, and confidence interval coverage. Results: At 10% censoring, KM estimates closely matched the true median (bias = –0.2 months; SE = 1.1; CI coverage = 95%). At 30% censoring, bias increased to –1.1 months with reduced CI coverage (92%). At 50% censoring, median survival was underestimated by –3.4 months, SE nearly doubled (2.3), and CI coverage dropped to 85%.Conclusion: The Kaplan–Meier method is reliable under low censoring but underestimates survival when censoring is high. Researchers should report censoring rates, interpret KM estimates cautiously, and consider complementary methods such as Cox regression, parametric survival models, or restricted mean survival time.


 


 

Abstract 30 | Pdf Downloads 3

References

1. Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. 4th ed. Hoboken: Wiley; 2013. ISBN: 9781118593063
2. Kleinbaum DG, Klein M. Survival Analysis: A Self-Learning Text. 3rd ed. New York: Springer; 2012. doi:10.1007/978-1-4419-6646-9
3. Machin D, Cheung YB, Parmar MKB. Survival Analysis: A Practical Approach. 2nd ed. Chichester: Wiley; 2006. ISBN: 9780470026373
4. Lawless JF. Statistical Models and Methods for Lifetime Data. 2nd ed. New York: Wiley; 2003. ISBN: 9780471372165
5. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81. doi:10.1080/01621459.1958.10501452
6. Altman DG, Bland JM. Survival probabilities: the Kaplan–Meier method. BMJ. 1998;317(7172):1572–80. doi:10.1136/bmj.317.7172.1572
7. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part I: basic concepts and first analyses. Br J Cancer. 2003;89(2):232–8. doi:10.1038/sj.bjc.6601118
8. Pocock SJ, Clayton TC, Altman DG. Survival plots of time-to-event outcomes in clinical trials: good practice and pitfalls. Lancet. 2002;359(9318):1686–9. doi:10.1016/S0140-6736(02)08594-X
9. Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis part II: multivariate data analysis – an introduction to concepts and methods. Br J Cancer. 2003;89(3):431–6. doi:10.1038/sj.bjc.6601119
10. Klein JP, Moeschberger ML. Survival Analysis: Techniques for Censored and Truncated Data. 2nd ed. New York: Springer; 2003. doi:10.1007/b97377
11. Collett D. Modelling Survival Data in Medical Research. 3rd ed. Boca Raton: Chapman & Hall/CRC; 2015. ISBN: 9781439856789
12. Hosmer DW, Lemeshow S, May S. Applied Survival Analysis: Regression Modeling of Time-to-Event Data. 2nd ed. New York: Wiley; 2008. ISBN: 9780471754992
13. Altman DG, Bland JM. Time to event (survival) data. BMJ. 1998;317(7156):468–9. doi:10.1136/bmj.317.7156.468
14. Royston P, Parmar MK. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med. 2011;30(19):2409–21. doi:10.1002/sim.4274
15. Uno H, Claggett B, Tian L, Inoue E, Gallo P, Miyata T, et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J Clin Oncol. 2014;32(22):2380–5. doi:10.1200/JCO.2014.55.2208