EVALUATION OF OXIDATIVE STRESS AND INFLAMMATORY BIOMARKERS IN DIABETIC PATIENTS TREATED WITH METFORMIN AND EMPAGLIFLOZIN: A CROSS-SECTIONAL STUDY

Main Article Content

Iqra Hannan
Misbah Majeed
Muhammad Usama Akash
Muhammad Ahsen Saeed
Zeeshan Ali
Rabia Hayee
Uzman Khan
Sabir Hussain
Naveed Shuja

Keywords

Type 2 Diabetes Mellitus, Metformin, Empagliflozin, Oxidative Stress, Inflammation

Abstract

Type 2 diabetes mellitus (T2DM) is associated with persistent oxidative stress and chronic low-grade inflammation, which accelerate vascular and metabolic complications. Metformin and empagliflozin are widely prescribed oral antidiabetic agents, each with potential pleiotropic benefits beyond glucose lowering. Comparative data on their effects on oxidative and inflammatory biomarkers in South Asian populations remain limited.


Objective: To evaluate oxidative stress and inflammatory biomarkers in T2DM patients treated with metformin and empagliflozin compared with healthy controls.


Methods: This cross-sectional study was carried out between January 2024 and January 2025 at the Sughra Shafi Medical Complex in Narowal and the Ittefaq Hospital Trust in Lahore. A total of 150 people were enrolled: 50 T2DM patients using metformin, 50 taking empagliflozin, and 50 healthy controls of similar age and gender. Demographic and clinical information was collected. Fasting glucose, HbA1c, and lipid profile were all investigated in the laboratory. Oxidative stress indicators (MDA, SOD, catalase) and inflammatory biomarkers (IL-6, hs-CRP) were also assessed. The data was analyzed using SPSS v26 with one-way ANOVA, and p < 0.05 was considered statistically significant.


Results: Diabetic patients exhibited significantly higher MDA, hs-CRP, and IL-6 levels compared with controls (p < 0.001). Empagliflozin-treated patients had significantly lower MDA (3.3 ± 0.5 µmol/L) and IL-6 (5.0 ± 1.3 pg/mL), and higher SOD (123 ± 18 U/mL) and catalase (79 ± 11 U/mL) activity compared with the metformin group (p < 0.05). Glycemic indices, including HbA1c, were comparable between treatment groups.


Conclusion: Both metformin and empagliflozin improved oxidative stress and inflammatory profiles in T2DM patients. Empagliflozin demonstrated superior antioxidant and anti-inflammatory effects, suggesting potential benefits in reducing long-term diabetic complications.

Abstract 81 | PDF Downloads 19

References

1. Derosa G, Maffioli P, D’Angelo A, et al. Effects of empagliflozin and metformin on endothelial function, oxidative stress, and inflammation in type 2 diabetic patients: a randomized, cross-over, clinical trial. Diabetes Obes Metab. 2020;22(10):1986–94. doi:10.1111/dom.14037
2. Alshnbari AS, Millar SA, O’Sullivan SE. Anti-inflammatory and antioxidative effects of metformin: new insights and future perspectives. Front Pharmacol. 2020; 11:581944. doi:10.3389/fphar.2020.581944
3. Li J, Xu T, Zhou J, et al. Empagliflozin alleviates oxidative stress and inflammation via the Nrf2/HO-1 signaling pathway in diabetic cardiomyopathy. Front Pharmacol. 2021; 12:707853. doi:10.3389/fphar.2021.707853
4. Packer M. Cardioprotective effects of SGLT2 inhibitors: mechanistic evidence for causality. Cardiovasc Res. 2021;117(1):16–29. doi:10.1093/cvr/cvaa121
5. Wang H, Li Q, Chen H, et al. Empagliflozin reduces oxidative stress and improves mitochondrial function in diabetic mice. Front Endocrinol (Lausanne). 2020; 11:528. doi:10.3389/fendo.2020.00528
6. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: a matter of inflammation, oxidative stress, and uric acid. Curr Med Chem. 2020;27(34):5645–60. doi:10.2174/0929867326666191031100649
7. Lee YH, Kim SR, Han DH, et al. Empagliflozin improves insulin sensitivity and reduces oxidative stress in obese diabetic rats. Diabetes Metab J. 2021;45(3):356–66. doi:10.4093/dmj.2020.0056
8. Ashraf M, Raza MZA, Altaf F, Anwar M, Chaudhary AA, Siddique A. Comparative Evaluation of Lipid Profiles and Cardiac Risk Markers in Obese and Non-Obese Patients Attending a Cardiology Clinic: Lipid Profiles and Cardiac Risk in Obesity. DEVELOPMENTAL MEDICO-LIFE-SCIENCES. 2025;2(3): 37-45.doi: 10.69750/dmls.02.03.0114
9. Rehman F, Hayat T, Fatima H, Shafiq M, Masood U, Batool R. Integrative Approaches in the Management of Diabetic Foot Ulcers: A Comparative Study of Conventional and Alternative Therapies: Integrative Approaches in Diabetic Foot Ulcer Therapy. DEVELOPMENTAL MEDICO-LIFE-SCIENCES. 2024;1(2): 44-52.doi: 10.69750/dmls.01.02.027
10. Saeedi P, Karuranga S, Salpea P, et al. Mortality attributable to diabetes in adults (20–79 years): results from the IDF Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020; 162:108086. doi: 10.1016/j.diabres.2020.108086
11. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795. doi:10.1155/2020/7489795
12. Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. doi:10.1056/NEJMoa2024816
13. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi:10.1056/NEJMoa1911303
14. Li C, Zhang J, Xue M, et al. Empagliflozin attenuates diabetic nephropathy by inhibiting inflammation and oxidative stress via regulation of the NLRP3 inflammasome. Mol Med Rep. 2020;22(6):5345–54. doi:10.3892/mmr.2020.11614
15. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. doi:10.1007/s00125-017-4342-z
16. Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of metformin’s anti-inflammatory activity. Pharmacol Res. 2019;146:104356. doi:10.1016/j.phrs.2019.104356
17. van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8:325–36. doi:10.1016/S2213-8587(19)30405-X
18. Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular outcomes trials in type 2 diabetes: Where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care. 2018;41(1):14–31. doi:10.2337/dci17-0057
19. Wilding JPH, Rajeev SP, DeFronzo RA. Positioning SGLT2 inhibitors/incretin-based therapies in the treatment algorithm of type 2 diabetes. Diabetes Care. 2020;43(12):2899–2914. doi:10.2337/dc20-1174
20. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. doi:10.1056/NEJMoa1504720
21. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. doi:10.1056/NEJMoa1611925
22. Storgaard H, Gluud LL, Bennett C, et al. Benefits and harms of sodium-glucose co-transporter-2 inhibitors in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS Med. 2016;13(11):e1002121. doi:10.1371/journal.pmed.1002121
23. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2020;158(1):711–25.e6. doi:10.1053/j.gastro.2019.11.172
24. Dave CV, Schneeweiss S, Kim D, et al. Comparative risk of genital infections associated with SGLT2 inhibitors: A real-world analysis. Ann Intern Med. 2020;173(7):543–52. doi:10.7326/M20-2005
25. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30. doi:10.1038/s41574-020-00435-4