Update on overview of pterygium and its surgical management

Main Article Content

Mitra Akbari

Keywords

Pterygium, Risk Factors, UV radiation, Surgery, Recurrence

Abstract

Pterygium is a bulbar conjunctival fibrovascular growth that crosses the limbus and extends onto the peripheral cornea, and in some cases leads to significant visual complications. The prevalence of this disease has been reported to be from 1.2% to about 40% in different parts of the world. Although there are various risk factors for pterygium, which include ultraviolet (UV) radiation, viral infection, hereditary factors, immune factors, aseptic inflammation, and environmental irritation, the pathogenesis of pteryg-ium is mainly related to exposure to UV light. In addition to cosmetic problems, pterygium can lead to eye irritation, disrupt the transparency of cornea on the pupil area, and cause disorders such as corneal astig-matism and damage to the visual axis leading to vision impairment. In the last few years, the treatment of pterygium has been developed and various new solutions have been used. Surgery is the main treatment for pterygium. Various techniques such as Bare Sclera, Rotational Conjunctival Flap, Limbal Conjunctival Autograft, Amniotic Membrane Graft, and Free Conjunctival Autograft are used for the removal of pte-rygium. It also seems that the worrisome problem of recurrence has been significantly reduced with newer treatment methods. On the contrary, the use of auxiliary treatments such as mitomycin C, b-radiation, 5-fluorouracil, topical use of interferons, and Avastin are also effective in reducing the recurrence rate.

Abstract 1403 | PDF Downloads 1697 XML Downloads 189 HTML Downloads 425

References

1. Rocha G. Surgical management of pterygium. Tech Ophthalmol. 2003; 1(1): 22–28. https://doi.org/10.1097/00145756-200303000-00008
2. Kaufman S, Jacobs D, et al. Options and adju-vants in surgery for pterygium. Ophthalmology. 2013; 120: 201–208. https://doi.org/10.1016/j.ophtha.2012.06.066
3. Singh S. Pterygium: epidemiology prevention and treatment. Comm Eye Health J. 2017; 29(99): s5–s6.
4. Akbari M, Soltani-Moghadam R, Elmi R, et al. Comparison of free conjunctival autograft versus amniotic membrane transplantation for pterygium surgery. J Curr Ophthalmol. 2017; 29(4): 282–286. https://doi.org/10.1016/j.joco.2017.08.003
5. Anguria P, Kitinya J, et al. The role of heredity in pterygium development. Int J Ophthalmol. 2014; 7(3): 563–573.
6. Shahraki T, Arabi A, and Feizi S. Pterygium: an update on pathophysiology, clinical features, and management. Ther Adv Ophthalmol. 2021; 13: 1–21. https://doi.org/10.1177/25158414211020152
7. Liu L, and Wu J. Geographical prevalence and risk factors for pterygium: a systematic review and meta-analysis. BMJ Open. 2013; 3: e003787. https://doi.org/10.1136/bmjopen-2013-003787
8. Cárdenas-Cantú E, Zavala J, et al. Molecular basis of pterygium development. Semin Ophthalmol. 2016; 31(6): 567–583.
9. Gazzard G, Saw S, et al. Pterygium in Indonesia: prevalence, severity and risk factors. Br J Ophthalmol. 2002; 86: 1341–1346. https://doi.org/10.1136/bjo.86.12.1341
10. Hashemi H, Khabazkhoob M, et al. The prevalence and determinants of pterygium in rural areas. J Curr Ophthalmol. 2017; 29(3): 194–198. https://doi.org/10.1016/j.joco.2016.09.002
11. Fekadu S, Assem A, and Adimassu NF. Prevalence of pterygium and its associated factors among adults aged 18 years and above in Gambella town, Southwest Ethiopia, May 2019. PLoS One. 2020; 15(9): e0237891. https://doi.org/10.1371/journal.pone.0237891
12. Özer A, Yıldırım N, et al. Long-term results of bare sclera, limbal-conjunctival autograft and amniotic membrane graft techniques in primary pterygium excisions. Ophthalmologica. 2009; 223: 269–273. https://doi.org/10.1159/000210444
13. Reda A, Shaaban Y, and Saad El-Din SA. Histopathological parameters in pterygia and sig-nificant clinical correlations. J Ophthalmic Vis Res. 2018; 13(2): 110–118. https://doi.org/10.4103/jovr.jovr_31_17
14. Ibrahim M, Salman A, et al. Histopathological study of primary pterygium. J Ophthalmol Relat Sci. 2018; 2(1): 22–25. https://doi.org/10.21608/jors.2018.10253
15. Baradaran-Rafii A, Akbari M, Shirzadeh E, et al. Single block conjunctival limbal autograft for unilateral total limbal stem cell deficiency. J Ophthal Vision Res. 2015; 10(1): 90–92. https://doi.org/10.4103/2008-322X.156132
16. Akbari M, and Elmi R. Herpes simplex virus and human papillomavirus coinfections in hyperim-munoglobulin E syndrome presenting as a con-junctival mass lesion. Case Rep Med. 2017; 2017: 1650841. https://doi.org/10.1155/2017/1650841
17. Chui J, Coroneo M, et al. Ophthalmic pterygium a stem cell disorder with premalignant features. Am J Pathol. 2011; 178(2): 817–827. https://doi.org/10.1016/j.ajpath.2010.10.037
18. Kase S, Takahashi S, et al. Expression of p27(KIP1) and cyclin D1, and cell proliferation in human pterygium. Br J Ophthalmol. 2007; 91: 958–961. https://doi.org/10.1136/bjo.2006.110387
19. Habibalahi A, Allende A, et al. Pterygium and ocular surface squamous neoplasia: optical biopsy using a novel autofluorescence multispectral imag-ing technique. Cancers. 2022; 14: 1591. https://doi.org/10.3390/cancers14061591
20. Džunić B, Jovanović P, et al. Analysis of patho-histological characteristics of pterygium. Bosnian J Basic Med Sci. 2010; 10(4): 307–313. https://doi.org/10.17305/bjbms.2010.2677
21. KaRadag R, Sevimli N, et al. A comparison of two conjunctival rotation autograft tech-niques in primary pterygium surgery. Arq Bras Oftalmol. 2017; 80(6): 373–377. https://doi.org/10.5935/0004-2749.20170091
22. Kato N, and Shimmura S. Epithelial-mesenchymal transition in the pathogenesis of pterygium. Inflam Regen. 2008; 28(5): 435–439. https://doi.org/10.2492/inflammregen.28.434
23. Cakmak H, Can G, et al. A novel graft option after pterygium excision: platelet-richfibrin for conjunc-tivoplasty. Eye. 2017; 31: 1606–1612. https://doi.org/10.1038/eye.2017.109
24. Kato N, Shimmura S, et al. B-Catenin activation and epithelial–mesenchymal transition in the pathogenesis of pterygium. IOVS. 2007; 48(4): 1512–1517. https://doi.org/10.1167/iovs.06-1060
25. Turan M, and Turan G. Overexpression of frac-talkine and its histopathological characteristics in primary pterygium. Graefes Arch Clin Exp Ophthalmol. 2019; 257(12): 2743–2750. https://doi.org/10.1007/s00417-019-04463-3
26. Zhou W, Zhu Y, et al. The role of ultraviolet radia-tion in the pathogenesis of pterygia (Review). Mol Med Rep. 2016; 14: 3–15. https://doi.org/10.3892/mmr.2016.5223
27. Hilgers J. Pterygium: its incidence, heredity and etiology. Am J Ophthalmol. 1960; 50: 635–644. https://doi.org/10.1016/0002-9394(60)90245-2
28. Mackenzie F, Hirst L, et al. Risk analysis in the development of pterygia. Ophthalmol. 1992; 99(7): 1056–1061. https://doi.org/10.1016/S0161-6420(92)31850-0
29. McCarty C, Fu C, et al. Epidemiology of pteryg-ium in Victoria, Australia. Br J Ophthalmol. 2000; 84: 289–292. https://doi.org/10.1136/bjo.84.3.289
30. Yam J, and Kwok AH. Ultraviolet light and ocu-lar diseases. Int Ophthalmol. 2014; 34: 383–400. https://doi.org/10.1007/s10792-013-9791-x
31. Chalkia A, Spandidos D, et al. Viral involvement in the pathogenesis and clinical features of ophthal-mic pterygium (Review). Int J Mol Med. 2013; 32: 539–543. https://doi.org/10.3892/ijmm.2013.1438
32. Coroneo M. Pterygium as an early indica-tor of ultraviolet insolation: a hypothesis. Br J Ophthalmol. 1993; 77: 734–739. https://doi.org/10.1136/bjo.77.11.734
33. Romano V, Steger B, et al. Further evidence for heredity of pterygium. Ophthalmic Genet. 2016; 37(4): 434–436. https://doi.org/10.3109/13816810.2015.1111911
34. Kareem A, Farhood Q, et al. The use of antimetab-olites as adjunctive therapy in the surgical treat-ment of pterygium. Clin Ophthalmol. 2012; 6: 1849–1854. https://doi.org/10.2147/OPTH.S38388
35. Zhang J. An investigation of aetiology and hered-ityof pterygiu m report of 11 casesin a family. Acta Ophthalmol. 1987; 65: 413–416. https://doi.org/10.1111/j.1755-3768.1987.tb07016.x
36. Tsai Y, Chang C, et al. HPV infection and p53 inactivation in pterygium. Mol Vision. 2009; 15: 1092–1097.
37. Rodrigues F, Arruda J, et al. TP53 gene expression, codon 72 polymorphism and human papillomavi-rus DNA associated with pterygium. Genet Mol Res. 2008; 7(4): 1251–1258. https://doi.org/10.4238/vol7-4gmr528
38. Wanzeler A, Barbosa I, et al. Mechanisms and bio-marker candidates in pterygium development. Arq Bras Oftalmol. 2019; 82(6): 528–536. https://doi.org/10.5935/0004-2749.20190103
39. Hirst L. The treatment of pterygium. Surv Ophthalmol. 2003; 48(2): 146–176. https://doi.org/10.1016/S0039-6257(02)00463-0
40. Mauro J, and Foster C. Pterygia: pathogenesis and the role of subconjunctival bevacizumab in treatment. Semin Ophthalmol. 2009; 24: 130–134. https://doi.org/10.1080/08820530902801106
41. Graue-Hernandez E, Córdoba A, et al. Practice patterns in the management of primary pterygium: a survey study. Cornea. 2019; 38(11): 1339–1344. https://doi.org/10.1097/ICO.0000000000002091
42. Young A, Kam K. Pterygium: surgical tech-niques and choices. Asia Pac J Ophthalmol. 2019; 8(6): 422–423. https://doi.org/10.1097/APO.0000000000000269
43. Hovanesian J, Starr C, et al. Surgical techniques and adjuvants for the management of primary and recurrent pterygia. J Cataract Refract Surg. 2017; 43: 405–419. https://doi.org/10.1016/j.jcrs.2017.03.002
44. Hwang H, Cho K, et al. Optimal size of pteryg-ium excision for limbal conjunctival autograft using fibrin glue in primary pterygia. BMC Ophthalmol. 2018; 18: 135. https://doi.org/10.1186/s12886-018-0790-6
45. Janson B, and Sikder S. Surgical management of pterygium. Ocul Surf. 2014; 12(2): 112–119. https://doi.org/10.1016/j.jtos.2014.01.001
46. Alsmman A, Radwan G, et al. Preoperative subcon-junctival combined injection of bevacizumab and mitomycin C before the surgical excision of pri-mary pterygium: clinical and histological results. Clin Ophthalmol. 2017; 11: 493–501. https://doi.org/10.2147/OPTH.S127700
47. Das S. Recurrence-free pterygium surgery with special surgical technique. Med J DY Patil Vidyapeeth. 2018; 11: 492–8. https://doi.org/10.4103/mjdrdypu.mjdrdypu_49_18
48. Narsani A, Muhammad Jatoi S, et al. Recurrence of pterygium with conjunctival autograft versus mitomycin C. Pak J Ophthalmol. 2008; 24(1): 29–34.
49. Fernandes M, Sangwan V, et al. Outcome of pte-rygium surgery: analysis over 14 years. Eye (Lond). 2005; 19(11): 1182–1190. https://doi.org/10.1038/sj.eye.6701728
50. Nuzzi R, and Tridico F. How to minimize pteryg-ium recurrence rates: clinical perspectives. Clin Ophthalmol. 2018; 12: 2347–2362. https://doi.org/10.2147/OPTH.S186543
51. Chu W, Choi H, et al. Pterygium: new insights. Eye. 2020; 34: 1047–1050. https://doi.org/10.1038/s41433-020-0786-3
52. Kamiya K, Shimizu K, et al. Predictability of intraocular lens power calculation after simul-taneous pterygium excision and cataract sur-gery. Medicine. 2015; 94(52): e2232.https://doi.org/10.1097/MD.0000000000002232
53. Gulani A, and Dastur Y. Simultaneous pterygium and cataract surgery. J Postgrad Med. 1995; 41: 8–11.
54. Kheirkhah A, Nazari R, et al. Postoperative con-junctival inflammation after pterygium surgery with amniotic membrane transplantation ver-sus conjunctival autograft. Am J Ophthalmol. 2011; 152: 733–738. https://doi.org/10.1016/j.ajo.2011.04.013
55. Mohammed I. Treatment of pterygium. Ann Afr Med. 2011; 10(3): 197–203. https://doi.org/10.4103/1596-3519.84695
56. Jabbarvand M, Khalili M, et al. Limbal-conjunctival autograft transplantation for the man-agement of primary pterygium. Iran J Ophthalmol. 2007; 19(4): 1.
57. Mutlu F, Sobaci G, et al. A comparative study of recurrent pterygium surgery. Ophthalmology. 1999; 106(4): 817–821. https://doi.org/10.1016/S0161-6420(99)90172-0
58. Alpay A, Ug ̆urbas S, et al. Comparing techniques for pterygium surgery. Clin Ophthalmol. 2009; 3: 69–74. https://doi.org/10.2147/OPTH.S2767
59. HuerV V, MarcH A, et al. Pterygium surgery by means of conjunctival autograft: long term fol-low-up. Arq Bras Oftalmol. 2012; 75(4): 251–255. https://doi.org/10.1590/S0004-27492012000400006
60. Özdemir M. Conjunctival z-plasty for pteryg-ium: comparison with conjunctival autografting. Eur J Gen Med. 2008; 5(2): 84–89. https://doi.org/10.29333/ejgm/82583
61. Al Fayez M. Limbal-conjunctival vs conjuncti-val autograft transplant for recurrent pterygia. Jama Ophthalmol. 2013; 131(1): 11–16. https://doi.org/10.1001/archophthalmol.2012.2599
62. Wanzeler A, Duarte B, et al. Impact of conjuncti-val autograft on pterygium treatment: evaluation of related symptoms and patients’ satisfaction after surgery. Clin Ophthalmol. 2018; 12: 833–837. https://doi.org/10.2147/OPTH.S155631
63. McCoombes, J. A., Hirst, L. W., & Isbell, G. P. (1994). Sliding conjunctival flap for the treatment of primary pterygium. Ophthalmology, 101(1), 169–173. https://doi.org/10.1016/s0161-6420(94)31369-8
64. Kim D, Lee J, et al. Low recurrence rate of anchored conjunctival rotation flap technique in pterygium surgery. BMC Ophthalmol. 2017; 17: 187. https://doi.org/10.1186/s12886-017-0587-z
65. Bilge A. Comparison of conjunctival autograft and conjunctival transposition flap techniques in primary pterygium surgery. Saudi J Ophthalmol. 2018; 32(2): 110–113. https://doi.org/10.1016/j.sjopt.2017.11.002
66. Schwember J, Madrid L, et al. Rotatory conjuncti-val flap for pterygium removal: a simple and quick technique. Am J Cosmet Surg. 2017; 34(4): 183–186. https://doi.org/10.1177/0748806817705
67. Hassanen A, and Hassanen H. A comparison of conjunctival rotation flap and autoconjunc-tival graft techniques in pterygium surgery at aldiwaniah teaching hospital from 2007_2013. Al-Qadisiyah Med J. 2013; 12(2): 161–165. https://doi.org/10.5336/ophthal.2016-54163
68. Bilgin B, and Şimşek A. Comparison of conjuncti-val rotational flap and conjunctival autograft tech-niques in pterygium surgery. Turkiye Klinikleri J Ophthalmol. 2018; 27(1): 35–38. https://doi.org/10.5336/ophthal.2016-54163
69. Abul Naga A, Mahdi A, et al. Evaluation of the effectiveness of rotational conjunctival flap com-pared to free autografting for ocular surface reconstruction after surgical removal of primary pterygium. Egypt J Hosp Med. 2019; 76(7): 4483–4492. https://doi.org/10.21608/ejhm.2019.44830
70. Jha C. Conjunctival-limbal autograft for primary and recurrent pterygium. MJAFI. 2008; 64(4): 337–339. https://doi.org/10.1016/S0377-1237(08)80015-9
71. Dekaris I, Gabrić N, Karaman Z, et al. Pterygium treatment with limbal-conjunctival autograft transplantation. Coll Antropol. 2001; 25(Suppl.): 7–12. https://doi.org/10.1177/112067210201200301
72. Zheng K, Cai J, et al. Comparison of pterygium recurrence rates after limbal conjunctival autograft transplantation and other techniques: meta-anal-ysis. Cornea. 2012; 31(12): 1422–1427. https://doi.org/10.1097/ICO.0b013e31823cbecb
73. Noureddin G, and Yeung S. The use of dry amniotic membrane in pterygium surgery. Clin Ophthalmol. 2016; 10: 705–712. https://doi.org/10.2147/OPTH.S80102
74. Shusko A, Schechter B, et al. Pterygium sur-gery utilizing limbal conjunctival autograft and subconjunctival amniotic membrane graft in high-risk populations. Clin Ophthalmol. 2020; 14: 2087–2090. https://doi.org/10.2147/OPTH.S243584
75. Rosen R. Amniotic membrane grafts to reduce pte-rygium recurrence. Cornea. 2018; 37(2): 189–193. https://doi.org/10.1097/ICO.0000000000001407
76. Davari M, Ghitasi H. Treatment of recurrent pte-rygium with topical administration of interferon alpha-2b: a case report. J Surg Trauma. 2015; 3(1–2): 30–32.
77. Teng C, Patel N, et al. Effect of subconjunctival bevacizumab on primary pterygium. Cornea. 2009; 28(4): 468–470. https://doi.org/10.1097/ICO.0b013e31818d382d
78. Yin M, Li H, et al. Interferon alpha-2b eye drops prevent recurrence of pterygium after the bare sclera technique: a single-center, sequential, and controlled study. Cornea. 2019; 38(10): 1239–1244. https://doi.org/10.1097/ICO.0000000000001995
79. Esquenazi S. Treatment of early pterygium recur-rence with topical administration of interferon alpha-2b. Can J Ophthalmol. 2005; 40: 185–187. https://doi.org/10.1016/S0008-4182(05)80031-6
80. Schechter B, Schrier A, et al. Regression of presumed primary conjunctival and corneal intraepithelial neoplasia with topical interferon alpha-2b. Cornea. 2002; 21(1): 6–11. https://doi.org/10.1097/00003226-200201000-00003
81. Girolamo N, Wakefield D, et al. UVB-mediated induction of cytokines and growth factors in pterygium epithelial cells involves cell surface receptors and intracellular signaling. Investig Ophthalmol Vis Sci. 2006; 47(6): 2430–2437. https://doi.org/10.1167/iovs.05-1130
82. Akbari M, Soltani Moghadam R, Elmi R, et al. Topical tacrolimus as an adjunct to conventional therapy for stromal herpetic keratitis: a randomized clinical trial. J Ophthalmic Vis Res. 2019; 14(4): 400–411. https://doi.org/10.18502/jovr.v14i4.5437
83. Kim Y-H, Jung J-C, Jung S-Y, et al. Cyclosporine A downregulates MMP-3 and MMP-13 expres-sion in cultured pterygium fibroblasts. Cornea. 2015; 34(9): 1137–1143. https://doi.org/10.1097/ICO.0000000000000477
84. Fonseca EC, Rocha EM, Arruda GV. Comparison among adjuvant treatments for primary pteryg-ium: a network meta-analysis. Br J Ophthalmol. 2018; 102(6): 748–56. https://doi.org/10.1136/bjophthalmol-2017-310288
85. Meneghim DS, Satto LH, Natsuaki KL, et al. Topical cyclosporine A 0.05% before and after surgery to prevent pterygium recurrence. Arq Bras Oftalmol. 2019; 82(5): 372–376. https://doi.org/10.5935/0004-2749.20190075
86. Alizadeh Y, Akbari M, Moghadam RS, et al. Comparison of pterygium recurrence with and without using postsutgical topical cyclospo-rine A 0.05% a randomized clinical trial. J Curr Ophthalmol. 2022; 34: 208–215.https://doi.org/10.4103/joco.joco_285_21