Tracking hepcidin level in induced type 2 diabetic rats and how Empagliflozin affects its level
Main Article Content
Keywords
Hepcidin, peripheral insulin resistance, SGLT2 inhibitor, high-fat diet/high-sugar diet, insulin
Abstract
Background: Hepcidin is a hormone that contributes in iron homeostasis, produced either through hepatic or extrahepatic pathways. Its production may be affected by proinflammatory mediators released by macrophages, which play a role in development of peripheral insulin resistance. Insulin itself may increase the production of hepcidin hormone from pancreatic β-cells.
Objectives: To evaluate the impact of induction type 2 diabetes mellitus (T2DM) in albino wister rat on the level of hepcidin. Also, to examine the role of two-week use of Empagliflozin, a sodium-glucose cotransporter-2 inhibitor (SGLT2 Inhibitor), on the hepcidin level comparing to control.
Method: An interventional study includes randomization of 36 rats into three groups (A: negative control, B: positive control, and C: Empagliflozin group). Two rats were excluded from the study for different reasons. T2DM was induced using high-fat diet/high-sugar diet (HFD/HSD) for 8 weeks. Empagliflozin then given to group C for two weeks in a dose of 35 mg/kg/day. Hepcidin level determined at the baseline, week 8, and week 10 intervals. Hepcidin was determined using enzyme-linked immunosorbent assay (ELISA).
Results: Hepcidin level significantly increased following induction of T2DM in both B and C groups. Hepcidin level in Group B insignificantly reduced two weeks after discontinuation of HFD/HSD and significantly reduced in group C. Group A experienced no statistical difference in hepcidin level at week 10 in compare to baseline.
Conclusion: Induction of T2DM associates with significant increase of Hepcidin level. Empagliflozin significantly reduced hepcidin level in newly induced diabetic rats.
References
2. Bek SG, Üstüner B, Eren N, et al. The effect of hepcidin on components of metabolic syndrome in chronic kidney disease: a cross-sectional study. Rev Assoc Med Bras (1992). 2020 Aug;66(8):1100–1107. https://doi.org/10.1590/1806-9282.66.8.1100
3. Kwapisz J, Slomka A, and Zekanowska E. Hepcidin and its role in iron homeostasis. EJIFCC. 2009 Aug 25;20(2):124–128.
4. Zhang AS, Davies PS, Carlson HL, et al Mechanisms of HFE-induced regulation of iron homeostasis: insights from the W81A HFE mutation. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9500–9505. https://doi.org/10.1073/pnas.1233675100
5. D’Angelo G. Role of hepcidin in the pathophys-iology and diagnosis of anemia. Blood Res. 2013 Mar;48(1):10–15. https://doi.org/10.5045/br.2013.48.1.10
6. Rishi G, Wallace DF, and Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. 2015 Mar 31;35(3):e00192. https://doi.org/10.1042/BSR20150014
7. Charlebois E, and Pantopoulos K. Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS One. 2021 Jun 23;16(6):e0253475. https://doi.org/10.1371/journal.pone.0253475
8. Kemna EH, Tjalsma H, Willems HL, et al. Hepcidin: from discovery to differential diagnosis. Haematologica. 2008 Jan;93(1):90–97. https://doi.org/10.3324/haematol.11705
9. Zhao N, Zhang AS, and Enns CA. Iron regulation by hepcidin. J Clin Invest. 2013 Jun;123(6):2337–2343. https://doi.org/10.1172/JCI67225
10. Mashili F, Chibalin AV, Krook A, et al. Constitutive STAT3 phosphorylation contributes to skele-tal muscle insulin resistance in type 2 diabetes. Diabetes. 2013 Feb;62(2):457–465. https://doi.org/10.2337/db12-0337
11. Wang H, Li H, Jiang X, et al. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes. 2014 May;63(5):1506–1518. https://doi.org/10.2337/db13-1195
12. Aregbesola A, Voutilainen S, Virtanen JK, et al. Serum hepcidin concentrations and type 2 diabetes. World J Diabetes. 2015 Jul 10;6(7):978–982. https://doi.org/10.4239/wjd.v6.i7.978
13. Nnodimy J, Chidozie NJ, Eberechi N, et al. Alterations of hepcidin and interleukin in dia-betics. Clinic Res Urol. 2020;3(1):1–3. https://doi.org/10.33309/2638-7670.030105
14. Kulaksiz H, Theilig F, Bachmann S, et al. The iron-regulatory peptide hormone hepcidin: expres-sion and cellular localization in the mammalian kidney. J Endocrinol. 2005 Feb;184(2):361–370. https://doi.org/10.1677/joe.1.05729
15. Atyia FTF, Gawaly AM, and Abd El-Bar ES. Hepcidin level changes in type 2 diabetes. Med J Cairo Univ. 2018 Sep; 86(6):3077–3082. https://doi.org/10.21608/mjcu.2018.59877
16. Fernández-Real JM, McClain D, and Manco M. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care. 2015 Nov;38(11):2169–2176. https://doi.org/10.2337/dc14-3082
17. Hattori S. Anti-inflammatory effects of empagli-flozin in patients with type 2 diabetes and insu-lin resistance. Diabetol Metab Syndr. 2018 Dec 18;10:93. https://doi.org/10.1186/s13098-018-0395-5
18. Singh RB, Fatima G, Kumar P, et al. Effects of empagliflozin on proinflammatory cytokines and other coronary risk factors in patients with type 2 diabetes mellitus: a single-arm real-world observa-tion. Int J Clin Pharmacol Ther. 2021 Jan;59(1):17–25.https://doi.org/10.5414/CP203787
19. Miyachi Y, Tsuchiya K, Shiba K, et al. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibi-tion. Sci Rep. 2018 Oct 31;8(1):16113. https://doi.org/10.1038/s41598-018-34305-x
20. Bjornstad P, Greasley PJ, Wheeler DC, et al. The potential roles of osmotic and nonosmotic sodium handling in mediating the effects of sodium- glucose cotransporter 2 inhibitors on heart failure. J Card Fail. 2021 Dec;27(12):1447–1455. https://doi.org/10.1016/j.cardfail.2021.07.003
21. Ghanim H, Abuaysheh S, Hejna J, et al. Dapagliflozin suppresses hepcidin and increases erythro-poiesis. J Clin Endocrinol Metab. 2020 Apr 1; 105(4):dgaa057. https://doi.org/10.1210/clinem/dgaa057
22. Han Y, Huang W, Meng H, et al. Pro-inflammatory cytokine interleukin-6-induced hepcidin, a key mediator of periodontitis-related anemia of inflam-mation. J Periodontal Res. 2021 Aug;56(4):690–701. https://doi.org/10.1111/jre.12865
23. Jiang F, Sun ZZ, Tang YT, et al. Hepcidin expres-sion and iron parameters change in type 2 diabetic patients. Diabetes Res Clin Pract. 2011 Jul;93(1):43–48. https://doi.org/10.1016/j.diabres.2011.03.028
24. Nikolakopoulou P, Chatzigeorgiou A, Kourtzelis I, et al. Streptozotocin-induced β-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain. Sci Rep. 2018 Jul 27;8(1):11335. https://doi.org/10.1038/s41598-018-29434-2
25. Hayashi K, Kojima R, and Ito M. Strain differ-ences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull. 2006 Jun;29(6):1110–1119. https://doi.org/10.1248/bpb.29.1110
26. Furman BL. Streptozotocin-induced diabetic mod-els in mice and rats. Curr Protoc Pharmacol. 2015 Sep 1;70:5.47.1–5.47.20. https://doi.org/10.1002/0471141755.ph0547s70
27. Nedosugova LV, Markina YV, Bochkareva LA, et al. Inflammatory mechanisms of diabetes and its vascular complications. Biomedicines. 2022 May 18;10(5):1168. https://doi.org/10.3390/biomedicines10051168
28. Bekri S, Gual P, Anty R, et al. Increased adi-pose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006 Sep;131(3):788–796. https://doi.org/10.1053/j.gastro.2006.07.007
29. Verga Falzacappa MV, Vujic Spasic M, Kessler R, et al. STAT3 mediates hepatic hepcidin expres-sion and its inflammatory stimulation. Blood. 2007 Jan 1;109(1):353–358. https://doi.org/10.1182/blood-2006-07-033969
30. Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007 Jan; 132(1):294–300. https://doi.org/10.1053/j.gastro.2006.10.018
31. Altamura S, Kopf S, Schmidt J, Müdder K, et al. Uncoupled iron homeostasis in type 2 diabetes mellitus. J Mol Med (Berl). 2017 Dec;95(12):1387–1398. https://doi.org/10.1007/s00109-017-1596-3
32. Sam AH, Busbridge M, Amin A, et al. Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet Med. 2013 Dec;30(12):1495–1499. https://doi.org/10.1111/dme.12262
33. Suárez-Ortegón MF, Moreno M, Arbeláez A, et al. Circulating hepcidin in type 2 diabetes: a multivariate analysis and double blind evaluation of metformin effects. Mol Nutr Food Res. 2015 Dec;59(12):2460–2470. https://doi.org/10.1002/mnfr.201500310
34. Ndevahoma F, Mukesi M, Dludla PV, et al. Body weight and its influence on hepcidin levels in patients with type 2 diabetes: a systematic review and meta-analysis of clinical studies. Heliyon. 2021 Mar 11;7(3):e06429. https://doi.org/10.1016/j.heliyon.2021.e06429
35. Lee N, Heo YJ, Choi SE, et al. Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling path-ways. J Immunol Res. 2021 Jun 2;2021:9944880. https://doi.org/10.1155/2021/9944880
36. Qu W, Yao L, Liu X, et al. Effects of sodium- glucose co-transporter 2 inhibitors on hemoglobin levels: a meta-analysis of randomized controlled trials. Front Pharmacol. 2021 Mar 12;12:630820. https://doi.org/10.3389/fphar.2021.630820