COMPARATIVE EVALUATION IN CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITIES OF PINUS WALLICHIANA NEEDLES ESSENTIAL OILS OBTAINED THROUGH STEAM AND HYDRO-DISTILLATION

Main Article Content

Ihsan Ullah
Abdullah Ijaz Hussain
Muhammad Asif Hanif

Keywords

Pinene, limonene, GC-MS, E. coli, DPPH

Abstract

The present study was planned to compare the chemical composition and biological activities of Pinus wallichiana (P. wallichiana) needles essential oils extracted through steam and hydro-distillation. It was found that the average yield of P. wallichiana needles essential oils (PWNSEO) was higher when extracted through steam-distillation as compared to hydro-distillation essential oil (PWNHEO). The chemical composition of PWNSEO and PWNHEO showed that main compounds (>5.0%) α-pinene (13.65-14.14%), limonene (2.67-8.21%), α-terpinolene (5.21-6.26%), 4-terpineol (1.09-9.12%) and caryophyllene (5.94-6.56%) were present in both essential oils whereas, α-terpineol (8.58%), α-terpinyl acetate (8.41%) were present in PWNSEO and β-myrcene (10.89%), β- Terpineol (6.98 %),  were present in PWNHEO. Biological activities were evaluated by using different bioactivity assays on essential oils. The anti-bacterial activity of essential oils was estimated by well diffusion as well as through MIC assays. PWNHEO showed higher activity for Gram positive bacteria (Inhibition zone, 29.15-31.02 mm) than Gram negative bacteria (Inhibition zone IZ, 14.56-22.68 mm). PWNSEO also exhibits stronger antibacterial activity against Gram-positive bacteria, as indicated by larger inhibition zones (18.02–27.19 mm). In contrast, its activity against Gram-negative bacteria is comparatively weaker, with inhibition zones ranging from 12.86 to 16.49 mm. Also, PWNHEO showed high antibacterial activity against different bacterial strains as compared to PWNSEO.

Abstract 119 | PDF Downloads 72

References

1. Sharma, P., Gupta, S., Bhatt, N., Ahanger, S. H., Gupta, D., Singh, P., Lochan, R., & Bhagat, M. (2019). Antioxidant and phytochemical analysis of volatile oil and extracts of Pinus wallichiana. MOJ Biology and Medicine, 4(2): 37-40.
2. Oliveira, V. S., Ferreira, F. S., Cople, M. C. R., Labre, T. D. S., Augusta, I. M., Gamallo, O. D., & Saldanha, T. (2018). Use of natural antioxidants in the inhibition of cholesterol oxidation: A review. Comprehensive Reviews in Food Science and Food Safety, 17(6): 1465-1483.
3. Ajila, C. M., Naidu, K. A., Bhat, S. G., and Rao, U. P. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3): 982-988.
4. Alesiani, D., Canini, A., Abrosca, D., B., DellaGreca, M., Fiorentino, A., Mastellone, C., & Pacifico, S. (2010). Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chemistry, 118(2): 199-207.
5. Chanda, S., & Baravalia, Y. (2010). Screening of some plant extracts against some skin diseases caused by oxidative stress and microorganisms. African Journal of Biotechnology, 9(21): 3210-3217.
6. Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance." Journal of infection and public health, 10(4): 369-378.
7. Ugoh, S. C., Agarry, O. O., & Garba, S. A. (2014). Studies on the antibacterial activity of Khaya senegalensis [(Desr.) A. Juss)] stem brk extract on Salmonella enterica subsp. enterica serovar Typhi [(ex Kauffmann and Edwards) Le Minor and Popoff]. Asian Pacific Journal of Tropical Biomedicine, 4: S279-S283.
8. Baek, E., Lee, D., Jang, S., An, H., Kim, M., Kim, K., & Ha, N. (2009). Antibiotic resistance and assessment of food-borne pathogenic bacteria in frozen foods. Archives of pharmacal research, 32: 1749-1757.
9. Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1): 184-207.
10. Irshad, M., Subhani, M. A., Ali, S., & Hussain, A. (2020). Biological importance of essential oils. Essential Oils-Oils of Nature, 1: 37-40.
11. Sousa, D. P., Damasceno, R. O. S., Amorati, R., Elshabrawy, H. A., de Castro, R. D., Bezerra, D. P., & Lima, T. C. (2023). Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7): 1-29.
12. Butnariu, M. (2021). Plants as source of essential oils and perfumery applications. Bioprospecting of Plant Biodiversity for Industrial Molecules, 261-292.
13. Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry, 13: 1-14.
14. Angane, M., Swift, S., Huang, K., Butts, C. A., & Quek, S. Y. (2022). Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods, 11(3): 1-26.
15. Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8): 601-611.
16. Sadgrove, N. & G. Jones. (2015). A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for australian agriculture. Agriculture, 5(1): 48-102.
17. David, O. R., & Doro, F. (2023). Industrial fragrance chemistry: a brief historical Perspective. European Journal of Organic Chemistry, 26(44): 1-14.
18. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils‐A review. Food and Chemical Toxicology, 46: 446–475.
19. Ghimire, B., K. P. Mainali, H. D. Lekhak, Chaudhary, R. P. , & A. K. Ghimeray. (2010). Regeneration of Pinus wallichiana AB Jackson in a Trans-Himaliyandry valley of North Central Nepal. Himalayan Journal of Sciences, 6: 19-26.
20. Dar, A. R. & Dar, G. H. (2006). The wealth of Kashmir Himalaya-gymnosperms. Asian Journal of Plant Sciences, 5(2): 251-259.
21. Sharma, A., Sharma, L., & Goyal, R. (2020). GC/MS characterization, in-vitro antioxidant, anti-inflammatory and antimicrobial activity of essential oils from Pinus plant species from Himachal Pradesh, India. Journal of Essential Oil Bearing Plants, 23(3): 522-531.
22. Dambolena, J. S., Gallucci, M. N., Luna, A., Gonzalez, S. B., Guerra, P. E., & Zunino, M. P. (2016). Composition, antifungal and antifumonisin activity of Pinus wallichiana, Pinus monticola and Pinus strobus essential oils from Patagonia Argentina. Journal of Essential Oil Bearing Plants, 19(7): 1769-1775.
23. Hussain, A. I., Anwar, F., Nigam, P. S., Sarker, S. D., Moore, J. E., Rao, J. R. & Mazumdar, A. (2011). Antibacterial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth. LWT-Food Science and Technology, 44: 1199-1206.
24. Hanif, M. A., Al-Maskri, A. Y., Al-Mahruqi, Z. M. H., Al-sabahi, J. N., Al-Azkawi, A., & Al-Maskari, M. Y. (2011). Analytical evaluation of three wild growing Omani medicinal plants. Natural Product Communication, 6 (10): 1451 – 1454.
25. Massada, Y. (1976). Analysis of essential oils by gas chromatography and mass spectrometry. New York: John Wiley and Sons.
26. Adam, R. P. (2001). Identification of essential oils components by gas chromatography/ quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Corp.
27. Singh, G., Marimuthu, P., De Heluani, C. S., & Catalan, C. A. (2006). Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. Journal of agricultural and food chemistry, 54(1): 174–181.
28. Deore, S. L., Khadabadi, S. S., Patel, Q. R., Deshmukh, S. P., Jaju, M. S., Junghare, N. R., Wane, T. P., & Jain, R.G. (2009). In vitro antioxidant activity and quantitative estimation of phenolic content of lagenaria siceraria. Journal of Chemistry, 2(1): 129-132.
29. Darwish, M. S., Al-Ramamneh, E. A., Kyslychenko, V. S., & Karpiuk, U. V. (2012). The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region-South of Jordan. Pakistan Journal of Pharmaceutical Sciences, 25(1): 239-246.
30. Hussain, A. I., Chatha, S. A. S., Kamal, G. M., Ali, M. A., Hanif, M. A., & Lazhari, M. I. (2017). Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. International Journal of food properties, 20(7): 1569-1581.
31. Maurya, A. K., Vashisath, S., Aggarwal, G., Yadav, V., & Agnihotri, V. K. (2022). Chemical Diversity and α‐Glucosidase Inhibitory Activity in Needles Essential Oils of Four Pinus Species from Northwestern Himalaya, India. Chemistry & Biodiversity, 19(12): e202200428.
32. Santos, S. M., Cardoso, C. A. L., de Oliveira Junior, P. C., da Silva, M. E., Pereira, Z. V., Silva, R. M. M. F., & Formagio, A. S. N. (2023). Seasonal and geographical variation in the chemical composition of essential oil from Allophylus edulis leaves. South African Journal of Botany, 154: 41-45.
33. Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52(9): 2485-2489.
34. Ayub, M. A., Choobkar, N., Hanif, M. A., Abbas, M., Ain, Q. U., & Riaz, M. (2022). Chemical composition and biological potential of Pinus roxburghii oleoresin essential oils extracted by steam distillation, superheated steam, and supercritical fluid CO2 extraction. Research Square, 1: 1-18.
35. Parihar, P. R. A. D. E. E. P., Parihar, L. E. E. N. A., & Bohra, A. (2006). Antibacterial activity of extracts of Pinus roxburghii Sarg. Bangladesh Journal of Botny, 35(1): 85-86.
36. Bhagat, M., Bandral, A., Bashir, M., & Bindu, K. (2018). GC–MS analysis of essential oil of Pinus roxburghii Sarg. (Chir pine) needles and evaluation of antibacterial and anti-proliferative properties. Indian Journal of Natural Products and Resources (IJNPR) [Formerly Natural Product Radiance (NPR)], 9(1): 34-38