COMPARATIVE EVALUATION IN CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITIES OF PINUS WALLICHIANA NEEDLES ESSENTIAL OILS OBTAINED THROUGH STEAM AND HYDRO-DISTILLATION
Main Article Content
Keywords
Pinene, limonene, GC-MS, E. coli, DPPH
Abstract
The present study was planned to compare the chemical composition and biological activities of Pinus wallichiana (P. wallichiana) needles essential oils extracted through steam and hydro-distillation. It was found that the average yield of P. wallichiana needles essential oils (PWNSEO) was higher when extracted through steam-distillation as compared to hydro-distillation essential oil (PWNHEO). The chemical composition of PWNSEO and PWNHEO showed that main compounds (>5.0%) α-pinene (13.65-14.14%), limonene (2.67-8.21%), α-terpinolene (5.21-6.26%), 4-terpineol (1.09-9.12%) and caryophyllene (5.94-6.56%) were present in both essential oils whereas, α-terpineol (8.58%), α-terpinyl acetate (8.41%) were present in PWNSEO and β-myrcene (10.89%), β- Terpineol (6.98 %), were present in PWNHEO. Biological activities were evaluated by using different bioactivity assays on essential oils. The anti-bacterial activity of essential oils was estimated by well diffusion as well as through MIC assays. PWNHEO showed higher activity for Gram positive bacteria (Inhibition zone, 29.15-31.02 mm) than Gram negative bacteria (Inhibition zone IZ, 14.56-22.68 mm). PWNSEO also exhibits stronger antibacterial activity against Gram-positive bacteria, as indicated by larger inhibition zones (18.02–27.19 mm). In contrast, its activity against Gram-negative bacteria is comparatively weaker, with inhibition zones ranging from 12.86 to 16.49 mm. Also, PWNHEO showed high antibacterial activity against different bacterial strains as compared to PWNSEO.
References
2. Oliveira, V. S., Ferreira, F. S., Cople, M. C. R., Labre, T. D. S., Augusta, I. M., Gamallo, O. D., & Saldanha, T. (2018). Use of natural antioxidants in the inhibition of cholesterol oxidation: A review. Comprehensive Reviews in Food Science and Food Safety, 17(6): 1465-1483.
3. Ajila, C. M., Naidu, K. A., Bhat, S. G., and Rao, U. P. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3): 982-988.
4. Alesiani, D., Canini, A., Abrosca, D., B., DellaGreca, M., Fiorentino, A., Mastellone, C., & Pacifico, S. (2010). Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chemistry, 118(2): 199-207.
5. Chanda, S., & Baravalia, Y. (2010). Screening of some plant extracts against some skin diseases caused by oxidative stress and microorganisms. African Journal of Biotechnology, 9(21): 3210-3217.
6. Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance." Journal of infection and public health, 10(4): 369-378.
7. Ugoh, S. C., Agarry, O. O., & Garba, S. A. (2014). Studies on the antibacterial activity of Khaya senegalensis [(Desr.) A. Juss)] stem brk extract on Salmonella enterica subsp. enterica serovar Typhi [(ex Kauffmann and Edwards) Le Minor and Popoff]. Asian Pacific Journal of Tropical Biomedicine, 4: S279-S283.
8. Baek, E., Lee, D., Jang, S., An, H., Kim, M., Kim, K., & Ha, N. (2009). Antibiotic resistance and assessment of food-borne pathogenic bacteria in frozen foods. Archives of pharmacal research, 32: 1749-1757.
9. Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1): 184-207.
10. Irshad, M., Subhani, M. A., Ali, S., & Hussain, A. (2020). Biological importance of essential oils. Essential Oils-Oils of Nature, 1: 37-40.
11. Sousa, D. P., Damasceno, R. O. S., Amorati, R., Elshabrawy, H. A., de Castro, R. D., Bezerra, D. P., & Lima, T. C. (2023). Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7): 1-29.
12. Butnariu, M. (2021). Plants as source of essential oils and perfumery applications. Bioprospecting of Plant Biodiversity for Industrial Molecules, 261-292.
13. Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry, 13: 1-14.
14. Angane, M., Swift, S., Huang, K., Butts, C. A., & Quek, S. Y. (2022). Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods, 11(3): 1-26.
15. Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8): 601-611.
16. Sadgrove, N. & G. Jones. (2015). A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for australian agriculture. Agriculture, 5(1): 48-102.
17. David, O. R., & Doro, F. (2023). Industrial fragrance chemistry: a brief historical Perspective. European Journal of Organic Chemistry, 26(44): 1-14.
18. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils‐A review. Food and Chemical Toxicology, 46: 446–475.
19. Ghimire, B., K. P. Mainali, H. D. Lekhak, Chaudhary, R. P. , & A. K. Ghimeray. (2010). Regeneration of Pinus wallichiana AB Jackson in a Trans-Himaliyandry valley of North Central Nepal. Himalayan Journal of Sciences, 6: 19-26.
20. Dar, A. R. & Dar, G. H. (2006). The wealth of Kashmir Himalaya-gymnosperms. Asian Journal of Plant Sciences, 5(2): 251-259.
21. Sharma, A., Sharma, L., & Goyal, R. (2020). GC/MS characterization, in-vitro antioxidant, anti-inflammatory and antimicrobial activity of essential oils from Pinus plant species from Himachal Pradesh, India. Journal of Essential Oil Bearing Plants, 23(3): 522-531.
22. Dambolena, J. S., Gallucci, M. N., Luna, A., Gonzalez, S. B., Guerra, P. E., & Zunino, M. P. (2016). Composition, antifungal and antifumonisin activity of Pinus wallichiana, Pinus monticola and Pinus strobus essential oils from Patagonia Argentina. Journal of Essential Oil Bearing Plants, 19(7): 1769-1775.
23. Hussain, A. I., Anwar, F., Nigam, P. S., Sarker, S. D., Moore, J. E., Rao, J. R. & Mazumdar, A. (2011). Antibacterial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth. LWT-Food Science and Technology, 44: 1199-1206.
24. Hanif, M. A., Al-Maskri, A. Y., Al-Mahruqi, Z. M. H., Al-sabahi, J. N., Al-Azkawi, A., & Al-Maskari, M. Y. (2011). Analytical evaluation of three wild growing Omani medicinal plants. Natural Product Communication, 6 (10): 1451 – 1454.
25. Massada, Y. (1976). Analysis of essential oils by gas chromatography and mass spectrometry. New York: John Wiley and Sons.
26. Adam, R. P. (2001). Identification of essential oils components by gas chromatography/ quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Corp.
27. Singh, G., Marimuthu, P., De Heluani, C. S., & Catalan, C. A. (2006). Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. Journal of agricultural and food chemistry, 54(1): 174–181.
28. Deore, S. L., Khadabadi, S. S., Patel, Q. R., Deshmukh, S. P., Jaju, M. S., Junghare, N. R., Wane, T. P., & Jain, R.G. (2009). In vitro antioxidant activity and quantitative estimation of phenolic content of lagenaria siceraria. Journal of Chemistry, 2(1): 129-132.
29. Darwish, M. S., Al-Ramamneh, E. A., Kyslychenko, V. S., & Karpiuk, U. V. (2012). The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region-South of Jordan. Pakistan Journal of Pharmaceutical Sciences, 25(1): 239-246.
30. Hussain, A. I., Chatha, S. A. S., Kamal, G. M., Ali, M. A., Hanif, M. A., & Lazhari, M. I. (2017). Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. International Journal of food properties, 20(7): 1569-1581.
31. Maurya, A. K., Vashisath, S., Aggarwal, G., Yadav, V., & Agnihotri, V. K. (2022). Chemical Diversity and α‐Glucosidase Inhibitory Activity in Needles Essential Oils of Four Pinus Species from Northwestern Himalaya, India. Chemistry & Biodiversity, 19(12): e202200428.
32. Santos, S. M., Cardoso, C. A. L., de Oliveira Junior, P. C., da Silva, M. E., Pereira, Z. V., Silva, R. M. M. F., & Formagio, A. S. N. (2023). Seasonal and geographical variation in the chemical composition of essential oil from Allophylus edulis leaves. South African Journal of Botany, 154: 41-45.
33. Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52(9): 2485-2489.
34. Ayub, M. A., Choobkar, N., Hanif, M. A., Abbas, M., Ain, Q. U., & Riaz, M. (2022). Chemical composition and biological potential of Pinus roxburghii oleoresin essential oils extracted by steam distillation, superheated steam, and supercritical fluid CO2 extraction. Research Square, 1: 1-18.
35. Parihar, P. R. A. D. E. E. P., Parihar, L. E. E. N. A., & Bohra, A. (2006). Antibacterial activity of extracts of Pinus roxburghii Sarg. Bangladesh Journal of Botny, 35(1): 85-86.
36. Bhagat, M., Bandral, A., Bashir, M., & Bindu, K. (2018). GC–MS analysis of essential oil of Pinus roxburghii Sarg. (Chir pine) needles and evaluation of antibacterial and anti-proliferative properties. Indian Journal of Natural Products and Resources (IJNPR) [Formerly Natural Product Radiance (NPR)], 9(1): 34-38