ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND OCCURRENCE OF ANTIBIOTICS IN LIVESTOCK WASTEWATER IN RAWALPINDI PAKISTAN
Main Article Content
Keywords
Livestock wastewater, livestock antibiotics, livestock farmers, antibiotic contamination, environmental health
Abstract
Background: Wastewater from livestock farms can contain high levels of organic matter and emerging pollutants, including antibiotics, which pose potential risks to environmental and public health. Seasonal variations can influence the physicochemical properties and presence of pollutants in wastewater.
Objectives: The study aimed to analyze the physicochemical parameters of wastewater samples from livestock farms in Rawalpindi, Pakistan, across summer and winter seasons and to detect the presence of seven common antibiotics to assess the pollution level and potential impact on receiving water bodies.
Methods: Sixty wastewater samples were collected from livestock farms of various sizes in both summer and winter seasons. Standard methods were used to measure physicochemical parameters, including temperature, pH, total dissolved solids (TDS), electrical conductivity (EC), biological oxygen demand (BOD), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP). Antibiotics were detected using reverse-phase high-performance liquid chromatography (HPLC) after sample preparation by the QuEChERS method, targeting ampicillin (AMP), amoxicillin (AMO), oxytetracycline (OTC), sulfamethazine (SMZ), sulfadiazine (SDZ), enrofloxacin (ENR), and trimethoprim (TMP).
Results: High BOD and COD values indicated significant organic matter content. pH levels were generally within WHO permissible limits, with only four samples exceeding pH 9 (beyond NEQS limits). A paired t-test revealed seasonal variations: temperature, TDS, and EC were higher in summer, while pH, BOD, COD, TKN, and TP were elevated in winter. The BOD/COD ratio indicated that most samples were biodegradable, with values over 0.5. Antibiotics were detected in 40% of summer and 26.66% of winter samples, with no antibiotics found in 43.33% of summer and 45% of winter samples. Most antibiotics detected were from the sulfonamide class, followed by ampicillin and tetracycline. Trimethoprim was the least detected, while enrofloxacin was only detected in winter (8.33%), possibly due to photolysis.
Conclusions: Livestock farms in Rawalpindi contribute pollutants, including antibiotics, to surrounding water bodies, presenting risks to environmental and public health. The seasonal differences in pollutants suggest a need for year-round monitoring and improved wastewater management
References
2. Administration, Washington, DC. p. 35.
3. Ajmal, M. M., Li, C. X., & Aslam, W. (2015) Current Status of Dairy Industry in Five districts
4. of Punjab, Pakistan. Journal of Economics and Sustainable Development Vol.6 (22), 19-28.
5. Akan, J. C., Abdulrahman, F. I., Dimari, G. A., & Ogugbuaja, V. O. (2008). Physicochemical determination of pollutants in wastewater and vegetable samples along the Jakara wastewater channelin Kano Metropolis, Kano State, Nigeria. European Journal of Scientific Research, 23(1), 122-133.
6. Akhtar, H., Muhammad, S., Aqleem, A., Nadia, K., Muhammad, I., Maria, I., & Asma, A. (2015). Detection of antibiotics cephtazidime and cephradine in hospital effluents and soil of Peshawar valley. Int J Biosci, 7, 58-65.
7. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature reviews microbiology, 8(4), 251-259.
8. Asghar, M. Z. (2018). Comparative assessment of physico-chemical parameters of waste water effluents from different industries in Lahore, Pakistan. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(2), 99.
9. Barua, J. R. M., Hussain, P., Hazarika, R. A., Kader, N. A., & Roy, N. K. (2021). Physicochemical Study of Livestock Farm Oriented Wastewater as a Source of Surface Water Pollution.
10. Ben, W., Qiang, Z., Adams, C., Zhang, H., & Chen, L. (2008). Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography a, 1202(2), 173-180.
11. Bickett-Weddle, D. A., & Ramirez, A. (2005). Dairy biological risk management, 1-37.
12. Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., & Bohn, T. (2010). Development of a multi-class method for the quantification of veterinary drug residues in feedingstuffs by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1217(41), 6394-6404.
13. Buelow, E., Bayjanov, J. R., Willems, R. J., Bonten, M. J., Schmitt, H., & Van Schaik, W. (2017). The microbiome and resistome of hospital sewage during passage through the community sewer system. BioRxiv, 216242.
14. Burkhardt, M., Stamm, C., Waul, C., Singer, H., & Müller, S. (2005). Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. Journal of environmental quality, 34(4), 1363-1371.
15. Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S., Kolpin, D. W., Meyer, M. T., Esteban, J.E., Currier, R.W., Thu, K.M., & McGeehin, M. (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment, 299(1-3), 89-95.
16. Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcı́a-Jares, C., Rodrı́guez, I., Gomez, M., & Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water research, 38(12), 2918-2926.
17. Castensson, S., & Ekedahl, A. (2010). Pharmaceutical waste: the patient role. Green and sustainable pharmacy, 179-200.
18. Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues-Jeanjean, N., & Mackie, R. I. (2001). Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Applied and environmental microbiology, 67(4), 1494-1502.
19. Coles, J. F., Cuffney, T. F., McMahon, G., & Beaulieu, K. M. (2004). The effects of urbanization on the biological, physical, and chemical characteristics of coastal New England streams (p. 47). Denver: US Geological Survey.
20. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews, 74(3), 417-433.
21. Fahrenfeld, N., Knowlton, K., Krometis, L. A., Hession, W. C., Xia, K., Lipscomb, E., Libuit, K., Green, B.L. & Pruden, A., (2014). Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environmental science & technology, 48(5), 2643-2650.
22. Ferrari, B., Paxéus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and environmental safety, 55(3), 359-370.
23. Figueroa, R. A., Leonard, A., & MacKay, A. A. (2004). Modeling tetracycline antibiotic sorption to clays. Environmental science & technology, 38(2), 476-483.
24. Food and Drug Administration. 2003. New guidance for industry on antimicrobial drugs for food animals. GFI#152. Released October 23. U.S. Food and Drug
25. Gaikar, R. B., Uphade, B. K., Gadhave, A. G., & Kuchekar, S. R. (2010). Effect of dairy effluent on seed germination & early seedling growth of soyabeans. Rasayan Journal Chemistry, 3, 137-139.
26. Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the total environment, 421, 173-183.
27. Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical chemistry, 73(15), 3632-3638.
28. Gu, D., Feng, Q., Guo, C., Hou, S., Lv, J., Zhang, Y., Yuan, S., & Zhao, X. (2019). Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bulletin of environmental contamination and toxicology, 103, 590-596.
29. Hamscher, G., Sczesny, S., Höper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical chemistry, 74(7), 1509-1518.
30. Handa, B. K. (1990). Contamination of groundwaters by phosphates. Bhu-jal News, 5, 24-36
31. Harrabi, M., Della Giustina, S. V., Aloulou, F., Rodriguez-Mozaz, S., Barceló, D., & Elleuch, B. (2018). Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environmental nanotechnology, monitoring & management, 10, 163-170.
32. Harrington, R., & McInnes, R. (2009). Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresource Technology, 100(22), 5498-5505.
33. Heuer, H., Schmitt, H., & Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current opinion in microbiology, 14(3), 236-243.
34. Hsu, J. T., Chen, C. Y., Young, C. W., Chao, W. L., Li, M. H., Liu, Y. H., Lin, C. M,. & Ying, C. (2014). Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Journal of hazardous materials, 277, 34-43.
35. Ibraheem, J. A. (2012). Detection of Tetracycline, Doxycycline, Chlortetracycline, and Oxytetracycline Antibiotics in Nineveha Drug Wastewater. Alnahrain Journal for Engineering Sciences 15(2), 215-221.
36. Ji, M. K., Ahn, Y. T., Ali Khan, M., Abou-Shanab, R. A., Cho, Y., Choi, J. Y., Kim, Y. JE., Song, H., & Jeon, B. H. (2011). Removal of nitrate and ammonium ions from livestock wastewater by hybrid systems composed of zero-valent iron and adsorbents. Environmental technology, 32(16), 1851-1857.
37. Jiang, H., Zhang, D., Xiao, S., Geng, C., & Zhang, X. (2013). Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environmental Science and Pollution Research, 20(12), 9075–9083.
38. Joshi, S., & Gokhale, S. (2006). Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Annals of the New York Academy of Sciences, 1081(1), 74-83.
39. Kamarudin, M. K. A., Abd Wahab, N., Bati, S. N. A. M., Toriman, M. E., Saudi, A. S. M., & Umar, R. (2020). Seasonal variation on dissolved oxygen, biochemical oxygen demand and chemical oxygen demand in Terengganu River Basin, Malaysia. Journal of Environmental Science and Management, 23(2).
40. Kim, J. P., Jin, D. R., Lee, W., Chae, M., & Park, J. (2020). Occurrence and removal of veterinary antibiotics in livestock wastewater treatment plants, South Korea. Processes, 8(6), 720.
41. Knight, R. L., Payne Jr, V. W., Borer, R. E., Clarke Jr, R. A., & Pries, J. H. (2000). Constructed wetlands for livestock wastewater management. Ecological engineering, 15(1-2), 41-55.
42. Kolhe, A. S., & Pawar, V. P. (2011). Physico-chemical analysis of effluents from dairy industry. Recent Research in Science and Technology, 3(5).
43. Kummerer, K. (2009a). Antibiotics in the aquatic environment–a review–part I. Chemosphere, 75(4), 417-434.
44. Kummerer, K. (2009b). Antibiotics in the aquatic environment–a review–part II. Chemosphere, 75(4), 435-441.
45. Lakew, A., Assefa, T., Woldeyohannes, M., Megersa, N., & Chandravanshi, B. S. (2022). Development and validation of liquid chromatography method for simultaneous determination of multiclass seven antibiotic residues in chicken tissues. BMC chemistry, 16(1), 5.
46. Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental science & technology, 44(9), 3468-3473.
47. Li, Y. X., Zhang, X. L., Li, W., Lu, X. F., Liu, B., & Wang, J. (2013). The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental monitoring and assessment, 185, 2211-2220.
48. Lin, L. U., LIAO, X. D., & LUO, X. G. (2017). Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry. Journal of Integrative Agriculture, 16(12), 2815-2833.
49. Lipsitch, M., T. Cohen, M. Murray and B. R. Levin. 2007. Antiviral resistance and the control of pandemic influenza. PLoS Medicine 4:e15.
50. Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. J. W. R. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water research, 47(3), 957-995.
51. Milic, N., Milanovic, M., Letic, N. G., Sekulic, M. T., Radonic, J., Mihajlovic, I., & Miloradov, M. V. (2013). Occurrence of antibiotics as emerging contaminant substances in aquatic environment. International journal of environmental health research, 23(4), 296-310.
52. Ming, T. T., Hyun, K. T., & Myun, J. L. (2007). Characterization of livestock wastewater at various stages of wastewater treatment plant. Malays. J. Anal. Sci, 11, 23-28.
53. Mofokeng, D. S., Adeleke, R., & Aiyegoro, O. A. (2016). The analysis of physicochemical characteristics of pig farm seepage and its possible impact on the receiving natural environment. African Journal of Environmental Science and Technology, 10(8), 242-252.
54. Naz. S., Riaz, K., & Nawab, S. (2024a). E-Pharmacy in Rural Pakistan: Evaluating Platforms' Reach, Opportunities, and Challenges. Journal of Health and Rehabilitation Research, 4(3), 1-6.
55. Naz, S., Ishtiaq, M., Riaz, K. (2024b). Effectiveness of E-Pharmacy Services in Managing Chronic Diseases in Rural Pakistan. Journal of Development and Social Sciences, 5(3), 442-452.
56. Othman, I., Anuar, A. N., Ujang, Z., Rosman, N. H., Harun, H., & ChelliapanS. (2013). Livestock wastewater treatment using aerobic granular sludge. Bioresource technology, 133, 630-634.
57. Patel, M., Patel, J. J., & Kathayat, B. A. (2018). Effect of Aerobic and Anaerobic Treatment on Physico Chemical Characterization of Dairy Waste Water. Int. J. Curr. Microbiol. App. Sci, 7(7), 827-832.
58. Patil, S. A., Ahire, V. V., & Hussain, M. H. (2014). Dairy wastewater-a case study. International Journal of Research in Engineering and Technology, 3(09), 30-34.
59. Rabolle, M., & Spliid, N. H. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40(7), 715-722.
60. Rezwana, F., Akter, H., Samad, M. A., & Rahman, M. M. (2022). An Assessment of Physicochemical Properties and Microbial Count in Dairy Wastewater in Savar Area, Bangladesh. Engineering Proceedings, 31(1), 61.
61. Rice, E. W., Bridgewater, L., & American Public Health Association (Eds.). (2012). Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC: American public health association.
62. Sacher, F., Lange, F. T., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of chromatography A, 938(1-2), 199-210.
63. Saez-Plaza, P., Navas, M. J., Wybraniec, S., Michałowski, T., & Asuero, A. G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Critical Reviews in Analytical Chemistry, 43(4), 224-272.
64. Schmidt, A. S., Bruun, M. S., Dalsgaard, I., Pedersen, K., & Larsen, J. L. (2000). Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Applied and environmental microbiology, 66(11), 4908-4915.
65. Shahzad, A., & Ahmed, W. (2009). Chemical pollution profile of Rehri creek area, Karachi (Sindh). Journal of the Chemical Society of Pakistan, 31(4), 592-600.
66. Shivsharan, V. S., Kulkarni, S. W., & Wani, M. (2013). Physicochemical characterization of dairy effluents. International Journal of Life science and Pharma Research, 2(2), 182-191.
67. Sim, W. J., Lee, J. W., Lee, E. S., Shin, S. K., Hwang, S. R., & Oh, J. E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179-186.
68. Singh, A., & Agrawal, M. (2012). Effects of waste water irrigation on physical and biochemical characteristics of soil and metal partitioning in Beta vulgaris L. Agricultural Research, 1, 379-391.
69. Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and oceanography, 51(1part2), 351-355.
70. Standard Methods (2017). Standard methods for the examination of water and wastewater (23th
71. Ed.). APHA-AWWA-WEF, American Public Health Association, Washington DC.
72. Sukul, P., Lamshöft, M., Kusari, S., Zühlke, S., & Spiteller, M. (2009). Metabolism and excretion kinetics of 14C-labeled and non-labeled difloxacin in pigs after oral administration, and antimicrobial activity of manure containing difloxacin and its metabolites. Environmental research, 109(3), 225-231.
73. Swedish, E. P. A. (2012). Naturvårdverket (Swedish Environmental Protection Agency). Avfalli Sverige. Report, 6520.
74. Szymanska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G., & Woźniak, M. K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchemical Journal, 147, 729-740.
75. Thiele, S. (2000). Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long‐term differently fertilized loess Chernozem. Journal of Plant Nutrition and Soil Science, 163(6), 589-594.
76. Thiele‐Bruhn, S., Seibicke, T., Schulten, H. R., & Leinweber, P. (2004). Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle‐size fractions. Journal of Environmental Quality, 33(4), 1331-1342.
77. Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of applied & environmental microbiology, 2(1), 16-22.
78. Verma, A., & Singh, A. (2018). Physico-chemical and genotoxic analysis of dairy industrial effluent. Jr. of Industrial Pollution Control 34(1), 1904-1911.
79. Wang, Y., Gao, P., Fan, M., & Jin, H. (2011). Preliminary study of purification for livestock wastewater of immobilized Microcystis Aeruginosa. Procedia Environmental Sciences, 11, 1316-1321.
80. Xu, W.H., G. Zhang, S.C. Zou, X.D. Li, and Y.C. Liu. 2007. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography spectrospray ionization tandem mass spectrometry. Environ. Pollut. 145:672–679. doi:10.1016/j. envpol.2006.05.038.
81. Yano, F., Nakajima, T., & Matsuda, M. (1999). Reduction of nitrogen and phosphorus from livestock waste: A major priority for intensive animal production-Review. Asian-Australasian Journal of Animal Sciences, 12(4), 651-656.
82. Zhang, X., Li, Y., Liu, B., Wang, J., Feng, C., Gao, M., & Wang, L. (2014). Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China. PLoS One, 9(11), e111026.
83. Zhu XiangDong, Z. X., Wang YuJun, W. Y., Sun RuiJuan, S. R., & Zhou DongMei, Z. D. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2.