MOLECULAR CHARACTERIZATION AND ANTIBIOTIC RESISTANCE PROFILE OF ESCHERICHIA COLI ISOLATED FROM LIVER ABSCESS

Main Article Content

Mohammad Nasar
Saqib Mumtaz
Muhammad Nadeem Hassan
Ijaz Ali
Sagar M Goyal
Nader Maher Sobhy
Sarra Grazza

Keywords

Bacteria, Liver, PCR, Resistance, biochemical

Abstract

Background: Bacterial liver abscess is the most common hepatic infection, which can lead to death. Escherichia coli is among the many species of bacteria that cause it. This study was conducted to isolate E. coli from liver abscess and then to characterise the bacteria's molecular makeup and antibiotic resistance profile.


Methods: A total of 208 stool samples were collected from patients showing symptoms of liver abscess. E. coli was isolated from these samples followed by identification by biochemical tests. Pure and biochemically positive colonies were confirmed by polymerase chain reaction. The disk diffusion method was used to ascertain the pattern of antibiotic resistance exhibited by E. coli isolates.


Results:  The PCR amplification efficiency was nearly 100% since all of the samples appeared at 284 molecular base pairs (bp), which is considered to be the optimal parameter assay. The antimicrobial susceptibility pattern showed that isolates were resistant to many drugs but 100% and 92% of the isolates were susceptible to imipenem and azithromycin, respectively. All isolates were resistant to ampicillin, vancomycin, and cefotaxime. This was followed by ceftazidime (72%), tetracycline (84%), trimethoprim (80%), streptomycin (96%), linezolid (92%), Teicoplanin (80%), nalidixic acid (84%), ciprofloxacin (92%), and chloramphenicol (72%).


Conclusion: Multiple drug resistant E. coli is one of the causes of liver abscesses in humans.

Abstract 199 | PDF Downloads 85

References

1. Alves, M.S., Dias, R.C.d.S., de Castro, A.C.D., Riley, L.W., Moreira, B.M., 2006. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. Journal of clinical microbiology 44, 3640-3646.
2. Amaretti, A., Righini, L., Candeliere, F., Musmeci, E., Bonvicini, F., Gentilomi, G.A., Rossi, M., Raimondi, S., 2020. Antibiotic resistance, virulence factors, phenotyping, and genotyping of non-Escherichia coli Enterobacterales from the gut microbiota of healthy subjects. International journal of molecular sciences 21, 1847.
3. Becerra, S.C., Roy, D.C., Sanchez, C.J., Christy, R.J., Burmeister, D.M., 2016. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC research notes 9, 1-10.
4. Berg, R.D., 1996. The indigenous gastrointestinal microflora. Trends in microbiology 4, 430-435.
5. Bettelheim, K., Lennox-King, S., 1976. The acquisition of Escherichia coli by new-born babies. Infection 4, 174-179.
6. Biswas, B., Basu, P., Pal, M., 1970. Gram staining and its molecular mechanism. International review of cytology 29, 1-27.
7. Budin, G., Chung, H.J., Lee, H., Weissleder, R., 2012. A ‘Magnetic’Gram Stain for Bacterial Detection. Angewandte Chemie (International ed. in English) 51, 7752.
8. Bujňáková, D., Puvača, N., Ćirković, I. 2022. Virulence factors and antibiotic resistance of enterobacterales (MDPI), 1588.
9. Bunchorntavakul, C., Chamroonkul, N., Chavalitdhamrong, D., 2016. Bacterial infections in cirrhosis: A critical review and practical guidance. World Journal of Hepatology 8, 307.
10. Bunu, S.J., Otele, D., Alade, T., Dodoru, R.T., 2020. Determination of serum DNA purity among patients undergoing antiretroviral therapy using NanoDrop-1000 spectrophotometer and polymerase chain reaction. Biomed Biotechnol Res J 4, 214-219.
11. Chauhan, A., Jindal, T., Chauhan, A., Jindal, T., 2020. Biochemical and molecular methods for bacterial identification. Microbiological methods for environment, food and pharmaceutical analysis, 425-468.
12. Claus, D., 1992. A standardized Gram staining procedure. World journal of Microbiology and Biotechnology 8, 451-452.
13. Croxen, M.A., Finlay, B.B., 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology 8, 26.
14. Dalmasso, G., Beyrouthy, R., Brugiroux, S., Ruppé, E., Guillouard, L., Bonnin, V., Saint-Sardos, P., Ghozlane, A., Gaumet, V., Barnich, N., 2023. Genes mcr improve the intestinal fitness of pathogenic E. coli and balance their lifestyle to commensalism. Microbiome 11, 12.
15. Devane, M.L., Moriarty, E., Weaver, L., Cookson, A., Gilpin, B., 2020. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. Water Research 185, 116204.
16. Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., Relman, D.A., 2005. Diversity of the human intestinal microbial flora. science 308, 1635-1638.
17. FR, E.S., AH, A., MM H, W., AS, B., Mwafy, A., 2019. Antimicrobial resistance and molecular characterization of pathogenic E. coli isolated from chickens. Journal of Veterinary Medical Research 26, 280-292.
18. Galindo-Méndez, M., 2020. Antimicrobial resistance in Escherichia coli. E. Coli Infections-Importance of Early Diagnosis and Efficient Treatment, 1-20.
19. Hoang, P.H., Awasthi, S.P., Do Nguyen, P., Nguyen, N.L.H., Nguyen, D.T.A., Le, N.H., Van Dang, C., Hinenoya, A., Yamasaki, S., 2017. Antimicrobial resistance profiles and molecular characterization of Escherichia coli strains isolated from healthy adults in Ho Chi Minh City, Vietnam. Journal of Veterinary Medical Science 79, 479-485.
20. Horne, B.A., Badji, H., Bhuiyan, M.T.R., Romaina Cachique, L., Cornick, J., Hotwani, A., Juma, J., Ochieng, J.B., Abdou, M., Apondi, E. 2024. Microbiological methods used in the Enterics for Global Health Shigella surveillance study. In: Open Forum Infectious Diseases, S25-S33.
21. Keesing, F., Ostfeld, R.S., 2021. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proceedings of the National Academy of Sciences 118, e2023540118.
22. Kohlerschmidt, D.J., Mingle, L.A., Dumas, N.B., Nattanmai, G. 2021. Identification of aerobic Gram-negative bacteria, In: Practical handbook of microbiology. CRC Press, 59-70.
23. Lambrecht, E., Van Coillie, E., Van Meervenne, E., Boon, N., Heyndrickx, M., Van de Wiele, T., 2019. Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). International journal of food microbiology 311, 108357.
24. Mahmoud, N.E., Altayb, H.N., Gurashi, R.M., 2020. Detection of carbapenem-resistant genes in Escherichia coli isolated from drinking water in khartoum, Sudan. Journal of environmental and public health 2020.
25. Nji, E., Kazibwe, J., Hambridge, T., Joko, C.A., Larbi, A.A., Damptey, L.A.O., Nkansa-Gyamfi, N.A., Stålsby Lundborg, C., Lien, L.T.Q., 2021. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Scientific reports 11, 3372.
26. Puvača, N., de Llanos Frutos, R., 2021. Antimicrobial resistance in Escherichia coli strains isolated from humans and pet animals. Antibiotics 10, 69.
27. Rahman, M.S., Rana, M.S., Hosen, M.B., Habib, M.A., Nur, A., Kaly, M.K., Matin, M.N., Nasirujjaman, K., Rahman, M.M., 2021. Isolation and characterization of bacteria from fermented cooked-rice. Biologia 76, 2359-2364.
28. Ramos, S., Silva, V., Dapkevicius, M.d.L.E., Caniça, M., Tejedor-Junco, M.T., Igrejas, G., Poeta, P., 2020. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 10, 2239.
29. Rao, K., Seekatz, A., Bassis, C., Sun, Y., Mantlo, E., Bachman, M.A., 2020. Enterobacterales infection after intestinal dominance in hospitalized patients. Msphere 5, 10.1128/msphere. 00450-00420.
30. Riccio, P., Rossano, R., 2020. The human gut microbiota is neither an organ nor a commensal. FEBS letters 594, 3262-3271.
31. Shoaib, M., Muzammil, I., Hammad, M., Bhutta, Z.A., Yaseen, I., 2020. A mini-review on commonly used biochemical tests for identification of bacteria. International Journal of Research Publications 54, 1-7.
32. Su, C., Brandt, L.J., 1995. Escherichia coli O157: H7 infection in humans. Annals of internal medicine 123, 698-707.
33. Tawfick, M.M., Elshamy, A.A., Mohamed, K.T., El Menofy, N.G., 2022. Gut commensal Escherichia coli, a high-risk reservoir of transferable plasmid-mediated antimicrobial resistance traits. Infection and Drug Resistance, 1077-1091.
34. Tenaillon, O., Skurnik, D., Picard, B., Denamur, E., 2010. The population genetics of commensal Escherichia coli. Nature Reviews Microbiology 8, 207.
35. Watkins, E.R., Maiden, M.C., Gupta, S., 2016. Metabolic competition as a driver of bacterial population structure. Future microbiology 11, 1339-1357.
36. Zarei-Baygi, A., Smith, A.L., 2021. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresource technology 319, 124181.
37. Zinnah, M., Bari, M., Islam, M., Hossain, M., Rahman, M., Haque, M., Babu, S., Ruma, R., Islam, M., 2007. Characterization of Escherichia coli isolated from samples of different biological and environmental sources. Bangladesh Journal of Veterinary Medicine 5, 25-32.

Most read articles by the same author(s)