EFFICIENT DIAGNOSIS OF STREPTOCOCCUS PNEUMONIA IN CEREBROSPINAL FLUID THROUGH METAGENOMICS: A BREAKTHROUGH IN CULTURE-INDEPENDENT DETECTION

Main Article Content

Rehan Ali
Kashif Ali
Muhammad Aurongzeb
Raheela Yasmin
Ramsha Afzal
AmmeemaKiran
Naveed Hussain
Salman Ahmed Khan
Asadul Haq
ImdadKaleem
Turki Abualait
Shahid Bashir

Keywords

Streptococcus pneumonia, bacterial meningitis, Metagenomic next-generation sequencing(mNGS), cerebrospinal fluid (CSF), Efficient Diagnosis, Antibiotic resistance genes, Functional annotation

Abstract

Streptococcus pneumoniae presents a major public health threat because of its high disease burden (infections and incidence), severe health outcomes (mortality and complications) and antibiotic resistance. The transmission dynamics of this noxious pathogen are very high in the vulnerable population of children causing around 800,000 mortalities per annum according to the World Health Organization (WHO). The present study highlights the severe central nervous system (CNS) infection caused byS.pneumoniaecommonly known as bacterial meningitis (BM), and the challenges associated with its conventional diagnostic methods. Despite advances in the use of culture-independent methods, many CNS pathogens still remain misdiagonsed. Metagenomic next-generation sequencing (mNGS) is considered to beaneffective diagnostic technique for cerebrospinal fluid (CSF) due to its high sensitivity and specificity. Our study investigated the implication of mNGS for the rapid diagnosis of S. pneumoniae infections from CSF samples isolated from meningitis patients.The results revealed that genomic sequencing analysis of the isolated CSF samples generated 87 contigsand provided valuable insights into the genetic structure of the S. pneumoniae strain causing BM.Functional annotation of genome sequences using tools like GenomeVx could leadtounderstanding the biology and evolutionary history of this deadly pathogen. Moreover, our results identified various antibiotic resistance genes within the assembled contigs, which could help reveal mechanisms ofresistance against various antibiotics and facilitate the treatment of this dreadful infection.

Abstract 636 | pdf Downloads 153

References

1. World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper – February 2019.Wklyepidemiol Rec 2019;94:85-104.
2. Gerlini A, Colomba L, Furi L, et al. The role of host and microbial factors in the pathogenesis of pneumococcal bacteraemia arising from a single bacterial cell bottleneck.PLoSPathog 2014;10:e1004026.
3. Wahl B, O'Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilusinfluenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health 2018;6:e744-57.
4. Wijayasri S, Hillier K, Lim GH, et al. The shifting epidemiology and serotype distribution of invasive pneumococcal disease in Ontario, Canada, 2007-2017. PLoS One 2019;14:e0226353.
5. Huang YC, Lin CF, Ting PJ, et al. Respiratory pathogens - Some altered antibiotic susceptibility after implementation of pneumococcus vaccine and antibiotic control strategies. J MicrobiolImmunol Infect 2020;53:682-9.
6. van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, WijdicksE.Community-acquired bacterial meningitis. Nat Rev Dis Primers. 2016;2:16074.
7. Global Burden of Disease Study 2013 Collaborators. Global, regional, andnational incidence, prevalence, and years lived with disability for 301 acute andchronic diseases and injuries in 188 countries, 1990–2013: a systematic analysisfor the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.
8. Lucas MJ, Brouwer MC, van de Beek D. Neurological sequelae of bacterialmeningitis. J InfSecur. 2016;73(1):18–27.
9. McIntyre PB, O'Brien KL, Greenwood B, van de Beek D. Effect of vaccines onbacterial meningitis worldwide. Lancet. 2012;380(9854):1703–11.
10. Li Y, Yin Z, Shao Z, Li M, Liang X, Sandhu HS, et al. Acute meningitis andencephalitis syndrome study group. Population-based surveillance forbacterial meningitis in China, September 2006–December 2009.EmergInfect Dis. 2014;20:61–9.
11. Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, andantimicrobial treatment of acute bacterial meningitis. ClinMicrobiol Rev.2010;23(3):467–92.
12. Hupp S, Ribes S, Seele J, Bischoff C, Förtsch C, Maier E, et al. Magnesiumtherapy improves outcome in Streptococcus pneumoniae meningitis byalteringpneumolysin pore formation. Br J Pharmacol. 2017;174(23):4295–307.
13. Grimwood K. Legacy of bacterial meningitis in infancy. many children continueto suffer functionally important deficits Br Med J. 2001;323(7321):523–4.
14. Libster R, Edwards KM, Levent F, Edwards MS, Rench MA, Castagnini LA, etal. Longterm outcomes of group B streptococcal meningitis. Pediatrics.2012;130(1):e8.
15. Stockmann C, Ampofo K, Byington CL, Filloux F, Hersh AL, Blaschke AJ, et al.
16. Pneumococcal meningitis in children: epidemiology, serotypes, andoutcomes from 1997-2010 in Utah. Pediatrics. 2013;132(3):421–8.
17. Chávez-Bueno S, McCracken GH. Bacterial meningitis in children.PediatrClin N Am. 2005;52(3):795–810.
18. U. Khatib, D. van de Beek, J. A. Lees, and M. C. Brouwer,“Adults with suspected central nervous system infection: aprospective study of diagnostic accuracy,” Journal of Infection,vol. 74, no. 1, pp. 1–9, 2017.
19. C. A. Glaser, S. Honarmand, L. J. Anderson et al., “Beyond viruses: clinical profiles and etiologies associated with encephalitis,”Clinical Infectious Diseases, vol. 43, no. 12, pp. 1565–1577, 2006.
20. C. Y. Chiu and S. A. Miller, “Clinical metagenomics,” Nature Reviews Genetics, vol. 20, no. 6, pp. 341–355, 2019.
21. M. R. Wilson, H. A. Sample, K. C. Zorn et al., “Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis,” New England Journal of Medicine, vol. 380, no. 24, pp. 2327–2340, 2019.
22. Zaidi, A. K., Khan, H., Lasi, R., Mahesar, W., & Sindh Meningitis Group (2009).Surveillance of pneumococcal meningitis among children in Sindh, southern Pakistan. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 48 Suppl 2, S129–S135.
23. 22-Shakoor, S., Kabir, F., Khowaja, A. R., Qureshi, S. M., Jehan, F., Qamar, F., Whitney, C. G., &Zaidi, A. K. (2014). Pneumococcal serotypes and serogroups causing invasive disease in Pakistan, 2005-2013. PloS one, 9(6),
24. Jamil B. (2020). Clinical features, diagnosis and management of COVID-19 patients in the outdoor setting. JPMA. The Journal of the Pakistan Medical Association, 70(Suppl 3)(5), S52–S55.
25. Karachi Population 2020 (Demographics, Maps, Graphs) [Internet]. [cited 2020 Apr 21]. Available from URL: https://worldpopulationreview.com/world-cities/karachipopulation/
26. He T, Kaplan S, Kamboj M, Tang YW.Laboratory Diagnosis of Central Nervous System Infection.Curr Infect Dis Rep. 2016 Nov;18(11):35.
27. Gazioglu O, Kareem BO, Afzal M, Shafeeq S, Kuipers OP, Ulijasz AT, Andrew PW, Yesilkaya H. Glutamate Dehydrogenase (GdhA) of Streptococcus pneumoniaeIs Required for High Temperature Adaptation. Infect Immun. 2021 Nov 16;89(12):e0040021.
28. Neyton, L.P.A., Langelier, C.R. &Calfee, C.S. Metagenomic Sequencing in the ICU for Precision Diagnosis of Critical Infectious Illnesses. Crit Care 27, 90 (2023).
29. Sullivan, G., Guo, X., Tokman, J. I., Roof, S., Trmcic, A., Baker, R. C., Tang, S., Markwell, P., Wiedmann, M., &Kovac, J. (2020). Extended Enrichment Procedures Can Be Used To Define False-Negative Probabilities for Cultural Gold Standard Methods for Salmonella Detection, Facilitating Comparisons between Gold Standard and Alternative Methods. Journal of food protection, 83(6), 1030–1037.
30. Chiu CY, Miller SA.Clinicalmetagenomics.Nat Rev Genet. 2019 Jun;20(6):341-355.
31. Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, Yi W, Li M, Xie Y. Advances in Metagenomics and Its Application in Environmental Microorganisms. Front Microbiol. 2021 Dec 17;12:766364.
32. Batool M, Galloway-Peña J. Clinical metagenomics-challenges and future prospects. Front Microbiol. 2023 Jun 28;14:1186424.
33. Cui Y, Qi J, Cai D, Fang J, Xie Y, Guo H, Chen S, Ma X, Gou L, Cui H, Geng Y, Ye G, Zhong Z, Ren Z, Hu Y, Wang Y, Deng J, Yu S, Cao S, Zou H, Wang Z, Zuo Z. Metagenomics Reveals That Proper Placement After Long-Distance Transportation Significantly Affects Calf Nasopharyngeal Microbiota and Is Critical for the Prevention of Respiratory Diseases. Front Microbiol. 2021 Sep 20;12:700704
34. Nurk S, Meleshko D, Korobeynikov A, PevznerPA.metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017 May;27(5):824-834
35. 34- Lu J, Rincon N, Wood DE, Breitwieser FP, Pockrandt C, Langmead B, Salzberg SL, Steinegger M. Metagenome analysis using the Kraken software suite. Nat Protoc. 2022 Dec;17(12):2815-2839.
36. Knight JR, Dunne EM, Mulholland EK, Saha S, Satzke C, Tothpal A, Weinberger DM. Determining the serotype composition of mixed samples of pneumococcus using whole-genome sequencing. MicrobGenom. 2021 Jan;7(1):mgen000494.
37. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018 Jul 1;34(13):i142-i150.
38. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics. 2014 Jun 20;15:211.

Most read articles by the same author(s)

<< < 1 2