MALE INFERTILITY- ROLE OF GENETICS AND EPIGENETICS- A NARRATIVE REVIEW

Main Article Content

Anurag Pandey
Mamta Tiwari
Arun Kumar Dwivedi
Ashutosh Pathak
Ajeet Kumar Yadav
P S Byadgi

Keywords

Azoospermia factor, AZF mutation, cytogenetic, male infertility, Y chromosome microdeletion, SRY gene mutation

Abstract

Male infertility is a complex condition with a strong genetic and epigenetic background. This review discusses the importance of genetic and epigenetic factors in the pathophysiology of male infertility. The interplay between thousands of genes, the epigenetic control of gene expression, and environmental and lifestyle factors, which influence genetic and epigenetic variants, determines the resulting male infertility phenotype. Currently, Y-chromosome microdeletion screening, AZF gene mutation tests, SRY gene mutation tests and AR (Androgen receptor) gene mutation tests along with their procedures are reviewed and demonstrated genetic etiological correlation in the pathogenies of azoospermia and severe oligozoospermia the root cause of Male Infertility. The rate of infertility in less industrialized nations is markedly higher than in infectious diseases and is responsible for a greater proportion of infertility. According to the latest data, globally, 15 % of couples have Infertility problems of which alone 40% account for male infertility and out of about 40% causes are idiopathic. Male infertility contributes to 10 % of all cases and is caused due to genetic factors. Regardless of whether it is primary or secondary infertility, the affected couples suffer from enormous emotional and psychological trauma and it can constitute a major life crisis in a social context. Infertility can be caused due to certain biological changes in gonads and the reproductive system like azoospermia, oligospermia, asthenospermia, teratozoospermia, and hypospermatogenesis. Genetic causes of azoospermia include Y-chromosome microdeletions, and deletion or other mutations of Y-linked genes. Many Y-linked genes regulate spermatogenesis. The maximum number of the genesis is located in the AZF region of the long arm of the Y chromosome. Y chromosome microdeletion is known as the second major genetic cause of spermatogenetic failure. This article aims to Systematic review the latest updates on the involvement of Y-chromosome microdeletion, AZF gene mutation, SRY gene mutation and AR (androgen receptor) gene mutation in the etiopathogenesis of male infertility for outcomes for our patients following Prisma guidelines.

Abstract 171 | pdf Downloads 121

References

[1] Eddy E. M. (2002). Male germ cell gene expression. Recent progress in hormone research, 57, 103–128. https://doi.org/10.1210/rp.57.1.103.
[2] Shamsi, M. B., Kumar, K., & Dada, R. (2011). Genetic and epigenetic factors: Role in male infertility. Indian journal of urology: IJU: journal of the Urological Society of India, 27(1), 110–120. https://doi.org/10.4103/0970-1591.78436.
[3] Yoshida A, Miura K, Shirai M. Cytogenetic survey of 1,007 males. Urol Int. 1997;58:166–76. [PubMed] [Google Scholar].
[4] Jackson, M., Marks, L., May, G., & Wilson, J. B. (2018). The genetic basis of disease. Essays in Biochemistry, 62(5), 643–723. https://doi.org/10.1042/EBC20170053.
[5] Kumar, N., & Singh, A. K. (2015). Trends of male factor infertility, an important cause of infertility: A review of literature. Journal of Human Reproductive Sciences, 8(4), 191–196. https://doi.org/10.4103/0974-1208.170370
[6] Dada R, Kumar R, Shamsi MB, Kumar R, Kucheria K, Sharma RK, et al. Higher frequency of Yqmicrodeletions in sperm DNA as compared to DNA isolated from blood. Asian J Androl. 2007;9:720–2. [PubMed] [Google Scholar].
[7] Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., Chinwalla, A., Delehaunty, A., Delehaunty, K., Du, H., Fewell, G., Fulton, L., Fulton, R., Graves, T., Hou, S. F., Latrielle, P., … Page, D. C. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 423(6942), 825–837. https://doi.org/10.1038/nature01722
[8] Yu, X. W., Wei, Z. T., Jiang, Y. T., & Zhang, S. L. (2015). Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. International journal of clinical and experimental medicine, 8(9), 14634–14646..
[9] Navarro­Costa P, Gonçalves J, Plancha CE. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update. 2010;16:525–42. [PMC free article] [PubMed]
[10] Skaletsky H, Kuroda­Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The male­specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–37. [PubMed]
[11] Colaco, S., & Modi, D. (2018). Genetics of the human Y chromosome and its association with male infertility. Reproductive biology and endocrinology: RB&E, 16(1), 14. https://doi.org/10.1186/s12958-018-0330-5
[12] Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34:119–24. [PubMed] [Google Scholar]
[13] Rabinowitz, M. J., Huffman, P. J., Haney, N. M., & Kohn, T. P. (2021). Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. The application of clinical genetics, 14, 51–59. https://doi.org/10.2147/TACG.S267421
[14] Qureshi SJ, Ross AR, Ma K et al. Polymerase chain reaction screening for Y chromosome microdeletions a first step towards the diagnosis of genetically determined spermatogenenc failure in men. Mol Hum Reprod 1996, 2: 775-9
[15] Kent-First M, Muallem A. Development of a large highly diagnostic panel of multiplexed sequence tagged sites (STSs) which cover key regions on human Yq: its application in fertile and infertile (azoospermic and ohgozoospermic) populations. Proceedings of the Second International Workshop on the Y Chromosome. (Organised by the National Institutes of Health USA and Human Genome Organisation, Medical Research Council, UK Pacific Grove, CA, USA September 17-20, 1995.) 1995; 24-5
[16] Heneganu O, Hirschmann P, Kilhan K et al. Rapid screening of the Y chromosome in ldiopathic sterile men, diagnostic for deletions in AZF, a genetic Y factor expressed during spermatogenesis. Andrologta 1994; 26: 97-10
[17] Suganthi, R., Vijesh, V. V., Vandana, N., & Fathima Ali Benazir, J. (2014). Y choromosomal microdeletion screening in the workup of male infertility and its current status in India. International journal of fertility & sterility, 7(4), 253–266.
[18] Ma K, Sharkey A, Kirsch S et al. Towards the molecular localisation of the AZF locus: mapping of microdelenons in azoospermic men within 14 subintervals of interval 6 of the human Y chromosome. Hum Mol Genet 1992; 1: 29-33

[19] Reijo R, Lee TY, Salo P et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 1995; 10. 383-93
[20] Sen, S., Pasi, A. R., Dada, R., Shamsi, M. B., & Modi, D. (2013). Y chromosome microdeletions in infertile men: prevalence, phenotypes and screening markers for the Indian population. Journal of assisted reproduction and genetics, 30(3), 413–422. https://doi.org/10.1007/s10815-013-9933-0
[21] Choi, D. K., Gong, I. H., Hwang, J. H., Oh, J. J., & Hong, J. Y. (2013). Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients WithNonobstructiveAzoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean journal of urology, 54(2), 111–116. https://doi.org/10.4111/kju.2013.54.2.111
[22] Colaco, S., Modi, D. Genetics of the human Y chromosome and its association with male infertility. ReprodBiolEndocrinol 16, 14 (2018). https://doi.org/10.1186/s12958-018-0330-5
[23] Sakthivel, P. J., & Swaminathan, M. (2008). Y chromosome microdeletions in sperm DNA of infertile patients from Tamil Nadu, south India. Indian journal of urology : IJU : journal of the Urological Society of India, 24(4), 480–485. https://doi.org/10.4103/0970-1591.44252
[24] Girardi, S. K., Mielnik, A., & Schlegel, P. N. (1997). Submicroscopic deletions in the Y chromosome of infertile men. Human reproduction (Oxford, England), 12(8), 1635–1641. https://doi.org/10.1093/humrep/12.8.1635
[25] Ma K, Inglis JD, Sharkey A et al. A Y chromosome gene family with RNA-binding protein homology candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 1993; 75 1-20
[26] Yu, X. W., Wei, Z. T., Jiang, Y. T., & Zhang, S. L. (2015). Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. International journal of clinical and experimental medicine, 8(9), 14634–14646.
[27] Cocuzza, M., Alvarenga, C., & Pagani, R. (2013). The epidemiology and etiology of azoospermia. Clinics (Sao Paulo, Brazil), 68 Suppl 1(Suppl 1), 15–26. https://doi.org/10.6061/clinics/2013(sup01)03
[28] Mitchell, M. J., Metzler-Guillemain, C., Toure, A., Coutton, C., Arnoult, C., & Ray, P. F. (2017). Single gene defects leading to sperm quantitative anomalies. Clinical genetics, 91(2), 208–216. https://doi.org/10.1111/cge.12900
[29] World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010. 5th ed.
[30] Pandey, A., Tiwari, M., Godatwar, P., &Sevatkar, B. K. (2012). OA01. 10. Clinical study of klaibya (male sexual dysfunctions) with special reference to hypertension. Ancient Science of Life, 32(Suppl 1), S10.
[31] Pandey, A., Tiwari, M., Godatwar, P., &Sevatkar, B. K. (2012). EPIDEMIOLOGICAL STUDY OF KLAIBYA IN HYPERTENSIVE PATIENTS. International Journal of Research in Ayurveda & Pharmacy, 3(5).
[32] Pandeya, A., Jaiswalb, A., Akhtarc, A., Pandeyd, A. K., &Byadgie, P. S. (2020). AN EMERGING ROLE OF SRY GENE, AZF GENE AND AR GENE IN AETIOLOGY OF MALE INFERTILITY AND AYURVEDIC ALGORITHM. Journal of Critical Reviews, 7(17), 2981-2989.
[33] Cerván-Martín, M., Castilla, J. A., Palomino-Morales, R. J., & Carmona, F. D. (2020). Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. Journal of clinical medicine, 9(2), 300. https://doi.org/10.3390/jcm9020300
[34] Dai RL, Sun LK, Yang X, Li LL, Zhu HB, Liu RZ. Expansion and de novo occurrence of Y chromosome microdeletions occurring via natural vertical transmission in northeastern China. J Int Med Res. 2012;40:1182–1191. [PubMed] [Google Scholar]
[35] Edwards RG, Bishop CE. On the origin and frequency of Y chromosome deletions responsible for severe male infertility. Mol Hum Reprod. 1997;3:549–554. [PubMed] [Google Scholar]
[36] Yu, X. W., Wei, Z. T., Jiang, Y. T., & Zhang, S. L. (2015). Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. International journal of clinical and experimental medicine, 8(9), 14634–14646.
[37] Kent-First, M., Muallem, A., Shultz, J., Pryor, J., Roberts, K., Nolten, W., Meisner, L., Chandley, A., Gouchy, G., Jorgensen, L., Havighurst, T., & Grosch, J. (1999). Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Molecular reproduction and development, 53(1), 27–41. https://doi.org/10.1002/(SICI)1098-2795(199905)53:1<27::AID-MRD4>3.0.CO;2-W
[38] Bonduelle M, Camus M, De Vos A, Staessen C, Tournaye H, Van Assche E, Verheyen G, Devroey P, Liebaers I, Van Steirteghem A. Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children. Hum Reprod. 1999;14(Suppl 1):243–264. [PubMed] [Google Scholar]
[39] Cram, D. S., Ma, K., Bhasin, S., Arias, J., Pandjaitan, M., Chu, B., Audrins, M. S., Saunders, D., Quinn, F., deKretser, D., & McLachlan, R. (2000). Y chromosome analysis of infertile men and their sons conceived through intracytoplasmic sperm injection: vertical transmission of deletions and rarity of de novo deletions. Fertility and sterility, 74(5), 909–915. https://doi.org/10.1016/s0015-0282(00)01568-5
[40] Evenson DP, Jost LK, Corzett M, Ballhorn R. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23:25–43. [PubMed] [Google Scholar]
[41] Agarwal A, Allamaneni SSR. The effect of sperm DNA damage in assisted reproduction outcomes. Minerva Ginecol. 2004;56:235–45. [PubMed] [Google Scholar]
[42] Suganthi, R., Vijesh, V. V., Vandana, N., & Fathima Ali Benazir, J. (2014). Y choromosomal microdeletion screening in the workup of male infertility and its current status in India. International journal of fertility & sterility, 7(4), 253–266.
[43] Yu, X. W., Wei, Z. T., Jiang, Y. T., & Zhang, S. L. (2015). Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. International journal of clinical and experimental medicine, 8(9), 14634–14646.
[44] Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, et al. Human Ychromosomeazoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet.1996;5:933–43. [PubMed: 8817327]
[45] Dada R, Gupta NP, Kucheria K. Semen cryopreservation in men with AZFcmicrodeletion. Clin Genet. 2003;64:74–5. [PubMed] [Google Scholar]
[46] Liu XH, Yan LY, Lu CL, Li R, Zhu XH, Jin HY, Zhang Y, Zhang WX, Gao SH, Qiao J. ART do not increase the risk of Y-chromosome microdeletion in 19 candidate genes at AZF regions. ReprodFertil Dev. 2014;26:778–786. [PubMed] [Google Scholar]
[47] Cram DS, Ma K, Bhasin S, Arias J, Pandjaitan M, Chu B, Audrins MS, Saunders D, Quinn F, deKretser D, McLachlan R. Y chromosome analysis of infertile men and their sons conceived through intracytoplasmic sperm injection: vertical transmission of deletions and rarity of de novo deletions. FertilSteril. 2000;74:909–915. [PubMed] [Google Scholar]
[48] Ambulkar PS, Sigh R, Reddy M, Varma PS, Gupta DO, Shende MR, Pal AK. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J ClinDiagn Res. 2014;8:88–91. [PMC free article] [PubMed] [Google Scholar]
[49] Vogt P, Elemann A, Kirsch S. Human Y chromosome azoospermic factors AZF mapped to different regions in Yall. Hum Mol Genet 1996; 5: 933-43
[50] Sun K, Chen XF, Zhu XB, Hu HL, Zhang W, Shao FM, Li P, Miao QL, Huang YR, Li Z. A new molecular diagnostic approach to assess Ychromosomemicrodeletions in infertile men. J Int Med Res. 2012;40:237–248. [PubMed] [Google Scholar]
[51] Mittwoch U (October 1988). "The race to be male". New Scientist. 120 (1635): 38–42.
[52] Kashimada K, Koopman P (December 2010). "Sry: the master switch in mammalian sex determination". Development. 137 (23): 3921–30. doi:10.1242/dev.048983. PMID 21062860
[53] Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA (June 2008). "Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes". GenomeResearch. 18 (6): 965doi:10.1101/gr.7101908. PMC 2413164. PMID 18463302
[54] Graves JA (December 2015). "Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation". Journal of Genetics. 94 (4): 567–74. doi:10.1007/s12041-015-0572-3. PMID 26690510. S2CID 186238659
[56] Reference, Genetics Home. "Klinefelter syndrome". Genetics Home Reference. Retrieved 20 july 2021.
[57] Graves JA (December 2015). "Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation". Journal of Genetics. 94 (4): 567–74. doi:10.1007/s12041-015-0572-3. PMID 26690510. S2CID 186238659.
[58] Gottlieb B, Trifiro MA. Androgen Insensitivity Syndrome. 1999 Mar 24 [Updated 2017 May 11]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1429/
[59] Bondurand, N., & Southard-Smith, E. M. (2016). Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and newplayers. Developmental biology, 417(2), 139–157. https://doi.org/10.1016/j.ydbio.2016.06.042
[60] Handelsman DJ. Androgen Physiology, Pharmacology, Use and Misuse. [Updated 2020 Oct 5]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279000/
[61] Tan, M., Li, J., Xu, H. et al. Androgen receptor: structure, role in prostate cancer and drug discovery. ActaPharmacol Sin 36, 3–23 (2015). https://doi.org/10.1038/aps.2014.18
[62] Wang, R. S., Yeh, S., Tzeng, C. R., & Chang, C. (2009). Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocrine reviews, 30(2), 119–132. https://doi.org/10.1210/er.2008-0025
[63] Kumar, N., & Singh, A. K. (2015). Trends of male factor infertility, an important cause of infertility: A review of literature. Journal of human reproductive sciences, 8(4), 191–196. https://doi.org/10.4103/0974-1208.170370
[64] Wang, Q., Ghadessy, F. J., & Yong, E. L. (1998). Analysis of the transactivation domain of the androgen receptor in patients with male infertility. Clinical genetics, 54(3), 185–192. https://doi.org/10.1111/j.1399-0004.1998.tb04282.x
[65] Werner, R., Zhan, J., Gesing, J., Struve, D., &Hiort, O. (2008). In-vitro characterization of androgen receptor mutations associated with complete androgen insensitivity syndrome reveals distinct functional deficits. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation, 2(2), 73–83. https://doi.org/10.1159/000129692
[66] Ferlin, A., Vinanzi, C., Garolla, A., Selice, R., Zuccarello, D., Cazzadore, C., &Foresta, C. (2006). Male infertility and androgen receptor gene mutations: clinical features and identification of seven novel mutations. Clinical endocrinology, 65(5), 606–610. https://doi.org/10.1111/j.1365-2265.2006.02635.x