HALOPHYTIC PLANT EXTRACTS AS A PROMISING SOURCE OF ANTIEPILEPTIC AGENTS- A PRE-CLINICAL STUDY ON PTZ-INDUCED SEIZURES IN ALBINO WISTAR RATS
Main Article Content
Keywords
Anticonvulsant activity, Bioactive compounds, Drug discovery, Natural products, Neurological effects, Phytochemicals
Abstract
Medicinal plants have been used as potential sources for new drug compounds. Halophytes have been used traditionally to cure a range of diseases. This study explores the anticonvulsant activity of medicinal halophytes against pentylenetetrazol (PTZ) induced seizures in Albino Wistar Rats. The antioxidant activity and phytochemical contents of medicinal halophytes were also determined. The ethanolic extracts (1000mg/kg body weight) of 12 medicinal halophytes were used. No mortality and signs of toxicity were evident in any of the halophytic extracts tested. A significant increase in latency (3-23 folds) as well as decrease in duration of myoclonic tonic clonic convulsions including flexion time (13-68%), extension time (3-55%), tonic clonic time (43-85%), stupor duration (30-59%) and frequency of convulsions (40-77%) were observed in halophyte treated group as compared to control. Halophytes showed strong DPPH radical scavenging activity (29.56% to 84.25%) with high contents of total polyphenols (19.54 to 57.19 mg GAE/g). Interestingly, halophytes with higher content and activity of antioxidant compounds showed maximum anticonvulsant effects, which were comparable to or even better than the positive control (Dizapam). This study reports the antiepileptic potential of antioxidant-rich halophytes and provides better insights towards the drug development. It also paves the road for complementary medical therapies against seizures and other similar neurological issues.
References
2. Duncan, J., Sander, J., Alim‐Marvasti, A., Balestrini, S., Baxendale, S., Bindman, D., ... & Yogarajah, M. (2024). Epilepsy and Related Disorders. Neurology: A Queen Square Textbook, 3rd edition, 247-318. https://doi.org/10.1002/9781119715672.ch10.
3. Divya, B., Narayanan, J., Chitra, V., & Tamilanban, T. (2022). Evaluation of Anti-Convulsant Activity of Olivetol on Ptz Induced Seizure Model. NeuroQuantology, 20(17), 372: Wiley. doi : 10.14704/Nq.2022.20.17.Nq88051.
4. Hubert, R. J., & VanMeter, K. (2018). Gould's pathophysiology for the health professions. St Louis: Elsevier.
5. Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New phytologist, 945-963. doi: 10.1111/j.1469-8137.2008.02531.x.
6. Abideen, Z., Qasim, M., Hussain, T., Rasheed, A., Gul, B., Koyro, H. W., ... & Khan, M. A. (2018). Salinity improves growth, photosynthesis and bioenergy characteristics of Phragmites karka. Crop Pasture Sci., 69(9), 944-953. https://doi.org/10.1071/CP18154.
7. Khan, M. A., & Qaiser, M. (2006). Halophytes of Pakistan: characteristics, distribution and potential economic usages. In Sabkha Ecosystems: Volume II: West and Central Asia (pp. 129-153). Dordrecht: Springer Netherlands.
8. Qasim, M., Abideen, Z., Adnan, M. Y., Gulzar, S., Gul, B., Rasheed, M., & Khan, M. A. (2017). Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot., 110, 240-250. https://doi.org/10.1016/j.sajb.2016.10.005.
9. Qasim, M., Abideen, Z., Adnan, M. Y., Ansari, R., Gul, B., & Khan, M. A. (2014). Traditional ethnobotanical uses of medicinal plants from coastal areas. J. Coast Life Med., 2(1), 22-30. doi:10.12980/JCLM.2.2014C1177.
10. Qasim, M., Gulzar, S., & Khan, M. A. (2011). Halophytes as medicinal plants. In M. Ozturk, A. R. Mermut, & A. Celik (Eds.), Urbanisation, land use, land degradation and environment (pp. 330–343). Daya Publishing House, New Delhi.
11. Qasim, M., Aziz, I., Rasheed, M., Gul, B., & Khan, M. A. (2016). Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes. Pak. J. Bot., 48(2), 621-627.27. http://www.pakbs.org/pjbot/PDFs/48(2)/27.pdf.
12. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.
13. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3.
14. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1), 70-76.doi: 10.1006/abio.1996.0292.
15. Prieto, P., Pineda, M. and Aguilar, M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 269, 337-341. http://dx.doi.org/10.1006/abio.1999.4019182.
16. Singleton, V. and Rossi, J. (1965) Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enoland Viticult., 16, 144-158.
17. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal., 10(3). DOI:10.38212/2224-6614.2748 184.
18. Sun, B., Leandro, C., Ricardo da Silva, J. M., & Spranger, I. (1998). Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem., 46(4), 1390-1396. doi.org/10.1021/jf970753d
19. Pearson, D. (1976) Chemical Analysis of Foods. 7th Edition, Churchhill Livingstone, London. 185.
20. Uddin, M. J., & Zidorn, C. (2020). Traditional herbal medicines against CNS disorders from Bangladesh. Nat Prod Bioprospect, 10, 377-410. doi:https://doi.org/10.1007/s13659-020-00269-7
21. Löscher, W. (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20(5), 359-368. doi.org/10.1016/j.seizure.2011.01.003
22. Obici, S., Otobone, F. J., da Silva Sela, V. R., Ishida, K., da Silva, J. C., Nakamura, C. V., & Audi, E. A. (2008). Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats. J. Ethnopharmacol., 115(1), 131-139. doi:https://doi.org/10.1016/j.jep.2007.09.013
23. Adedapo, A. D., Adedeji, W. A., Adedapo, I. A., & Adedapo, K. S. (2021). Cohort study on adverse drug reactions in adults admitted to the medical wards of a tertiary hospital in Nigeria: Prevalence, incidence, risk factors and fatality. Br. J. Clin. Pharmacol., 87(4), 1878-1889. https://doi.org/10.1111/bcp.14577.
24. Doi, T., Ueda, Y., Nagatomo, K., & Willmore, L. J. (2009). Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling. Neurochem. Res., 34, 1324-1331. https://doi.org/10.1007/s11064-009-9912-0.
25. Garbhapu, A., Yalavarthi, P., & Koganti, P. (2011). Effect of ethanolic extract of Indigofera tinctoria on chemically-induced seizures and brain GABA levels in albino rats. Iran. J. Basic Med. Sci., 14(4), 318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586835/.
26. Arshad, H. M., & Lodhi, A. H. (2022). Methanolic extract of Aerva Javanica leaves prevents LPS-induced depressive like behaviour in experimental mice. Drug Des Devel Ther, 16, 4179. doi: 10.2147/DDDT.S383054
27. Kouhestani, S., Jafari, A., & Babaei, P. (2018). Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen Res, 13(10), 1827-1832. doi:https://doi.org/10.4103/1673-5374.238714
28. Custódio, L., Ferreira, A. C., Pereira, H., Silvestre, L., Vizetto-Duarte, C., Barreira, L., ... & Varela, J. (2012). The marine halophytes Carpobrotus edulis L. and Arthrocnemum macrostachyum L. are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Botanica Marina, 55(3), 281-288. https://doi.org/10.1515/bot-2012-0098.
29. Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Yilmaz, M. A., & Mahomoodally, M. F. (2018). In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—A source of innovative phytopharmaceuticals from nature. Phytomed., 38, 35-44. doi:https://doi.org/10.1016/j.phymed.2017.10.017
30. Ríos, J. L., Schinella, G. R., & Moragrega, I. (2022). Phenolics as GABAA receptor ligands: An updated review. Molecules, 27(6), 1770. doi:https://doi.org/10.3390/molecules27061770
31. Moghbelinejad, S., Alizadeh, S., Mohammadi, G., Khodabandehloo, F., Rashvand, Z., Najafipour, R., & Nassiri-Asl, M. (2017). The effects of quercetin on the gene expression of the GABAA receptor α5 subunit gene in a mouse model of kainic acid-induced seizure. J. Physiol. Sci., 67(2), 339-343. https://doi.org/10.1007/s12576-016-0497-5.
32. Silva dos Santos, J., Goncalves Cirino, J. P., de Oliveira Carvalho, P., & Ortega, M. M. (2021). The pharmacological action of kaempferol in central nervous system diseases: a review. Front. Pharmacol., 11, 565700. https://doi.org/10.3389/fphar.2020.565700.
33. Ferreira, A., Rodrigues, M., Fortuna, A., Falcão, A., & Alves, G. (2018). Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int., 103, 110-120. doi:https://doi.org/10.1016/j.foodres.2017.10.010
34. Saleem, H., Khurshid, U., Sarfraz, M., Tousif, M. I., Alamri, A., Anwar, S., & Ahemad, N. (2021). A comprehensive phytochemical, biological, toxicological and molecular docking evaluation of Suaeda fruticosa (L.) Forssk.: An edible halophyte medicinal plant. Food Chem. Toxicol., 154, 112348. https://doi.org/10.1016/j.fct.2021.112348.
35. Pandey, M. K., Mittra, P., & Maheshwari, P. K. (2012). The lipid peroxidation product as a marker of oxidative stress in epilepsy. J. Clin. Diagn. Res., 6(4), 590-92. https://doi.org/10.7860/JCDR/2012/.2134.
36. Nilam, R., Jyoti, P., & Sumitra, C. (2018). Pharmacognostic and phytochemical studies of Ipomoea pes-caprae, an halophyte from Gujarat. J. Pharmacogn. Phytochem., 7(1), 11-18. https://www.phytojournal.com/archives?year=2018&vol=7&issue=1&ArticleId=2463.
37. Gonçalves, F. M. B., Ramos, A. C., Mathias, M. D. S., Sales, Q. D. S., Ramos, C. C., Antunes, F., & Oliveira, R. R. D. (2020). Phytochemical analysis and hypotensive activity of Ipomoea pes-caprae on blood pressure of normotensive rats. Rodriguésia, 71, e01122019. doi:https://doi.org/10.1590/2175-7860202071048
38. Chiroma, S. S., Nazifi, A. B., Jamilu, Y. U., Musa, A., Bichi, L. A., & Chiroma, S. M. (2022). Anticonvulsant activity and mechanism of actions of fractions of Ipomoea asarifolia (Desr) (Convolvulaceae) ethanol leaf extract. Bull. Natl. Res. Cent., 46(1), 150. https://doi.org/10.1186/s42269-022-00839-4.
39. Wasowski, C., Marder, M. (2012). Flavonoids as GABAA receptor ligands: the whole story? J. Exp. Pharmacol. 4:9-24. doi: 10.2147/JEP.S23105.
40. Hanrahan, J. R., Chebib, M., & Johnston, G. A. (2011). Flavonoid modulation of GABAA receptors. Br. J. Pharmacol., 163(2), 234-245.
41. Priyashree, S., Jha, S., & Pattanayak, S. P. (2010). A review on Cressa cretica Linn. A halophytic plant. Pharmacogn. Rev., 4(8), 161. doi:https://doi.org/10.4103/0973-7847.70910
42. Al-Snafi, A. E. (2016). The chemical constituents and therapeutic importance of Cressa cretica-A review. IOSR J Pharm, 6(6), 39-46.DOI:10.14419/IJPT.V2I1.1387
43. Shahat, A. A., Abdel-Azim, N. S., Pieters, L., & Vlietinck, A. J. (2004). Flavonoids from Cressa cretica. Pharm. Biol., 42(4-5), 349-352.
44. Khare, P., Yadav, G., Chaudhary, S., & Singh, L. (2014). Investigation on protective effects of Cressa cretica extract in scopolamine-induced memory impairment. Int. J. Pharmacol. Toxicol., 2(1), 13-16. doi:10.14419/ijpt.v2i1.1387.
45. Malik, A., & Kalidhar, S. (2007). Phytochemical examination of Prosopis cineraria L. (druce) leaves. Indian J Pharm Sci, 69(4), 576-576. doi:https://doi.org/10.4103/0250-474x.36950
46. Pareek, A. K., Garg, S., & Kuma, M. (2015). Prosopis cineraria: a gift of nature for pharmacy. Int J Pharma Sci Res, 6(6), 958-964.
47. Velmurugan, V., Arunachalam, G., & Ravichandran, V. (2012). Anticonvulsant activity of methanolic Extract of Prosopis cineraria (Linn) Druce stem barks. Int. J. PharmTech Res., 4(1), 89-92. https://www.cabidigitallibrary.org/doi/full/10.5555/20123115874.
48. Monforte, M. T., Trovato, A., Rossitto, A., Forestieri, A. M., d'Aquino, A., Miceli, N., & Galati, E. M. (2002). Anticonvulsant and sedative effects of Salvadora persica L. stem extracts. Phytother. Res., 16(4), 395-397. doi:https://doi.org/10.1002/ptr.977.
49. Binsuwaidan, R., Negm, W. A., Elekhnawy, E., Attallah, N. G., Ahmed, E., Magdeldin, S., & El-Sherbeni, S. A. (2023). In vitro antiviral effect and potential neuroprotection of Salvadora persica L. stem bark extract against Lipopolysaccharides-induced neuroinflammation in mice: LC-ESI-MS/MS analysis of the methanol extract. Pharmaceuticals, 16(3), 398. doi:https://doi.org/10.3390/ph16030398.
50. Singh, P., Kumar, A., & Singh, A. K. (2022). South Indian Medicinal Herb: An Extensive Comparison of the Neuroprotective Activity. Indopathy for Neuroprotection: Recent Advances, 168. doi:10.2174/9789815050868122010011.
51. Obese, E., Biney, R. P., Henneh, I. T., Adakudugu, E. A., Anokwah, D., Agyemang, L. S., & Ameyaw, E. O. (2021). The anticonvulsant effect of hydroethanolic leaf extract of Calotropis procera (Ait) R. Br.(Apocynaceae). Neural Plasticity, 2021. doi:https://doi.org/10.1155/2021/5566890.
52. Ahmad, S., Ahmad, S., Bibi, A., Ishaq, M. S., Afridi, M. S., Kanwal, F., & Fatima, F. (2014). Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum. Sci. World J., 2014. doi: 10.1155/2014/829076.
53. Vasudevan, M., & Parle, M. (2006). Pharmacological actions of Thespesia populnea relevant to Alzheimer's disease. Phytomed., 13(9-10), 677-687. doi: 10.1016/j.phymed.2006.01.007.
54. Kariyil, B. J., & Pravisha, K. R. (2023). Phytochemical and pharmacological aspects of Thespesia populnea. In: Cutting Edge Research in Biology 3 (45-46). https://dx.doi.org/10.38164/AJPER/10.3.2021.1-12.
55. Bhavani, S. (2015). Glinus lotoides (Ciru-Ceruppadai): an overview. J. Chem. Pharm. Res., 7(8), 676-682. https://api.semanticscholar.org/CorpusID:29983300.
56. Awan, A. M., Majeed, W., Javed, F., Aslam, B., Iftikhar, A., Kanwal, H. A., & Fiaz, S. (2022). Glinus lotoides ethanolic extract alleviates LPS-induced anxiety and depression-like behavior by modulating antioxidant and inflammatory biomarkers in rats. Asian Pac. J. Trop. Biomed., 12(2), 78-86. doi:10.4103/2221-1691.335696.