NANOPARTICLE-ENHANCED REGENERATIVE MEDICINE: A COMPREHENSIVE REVIEW ON APPLICATIONS, ADVANCES, AND DRUG DELIVERY SYSTEMS
Main Article Content
Keywords
Regenerative medicine, Nanoparticles, Tissue Engineering, drug delivery system
Abstract
Nanoparticle-enhanced regenerative therapies represent a paradigm shift in healthcare, using nanoparticles distinct capabilities to boost treatments for tissue repair and regeneration. The historical development, wide range of applications, and methodological complexities of nanoparticles integration in regenerative medicine are examined in this study. Through a thorough analysis of the literature, we are able to demonstrate the revolutionary potential of nanoparticles in enhancing regenerative processes, ranging from tissue engineering and targeted medication administration to imaging. Thematic studies highlight the adaptability and promise of nanoparticles in addressing medical needs by revealing applications across therapeutic modalities. An emphasis is placed on a rigorous approach that includes a thorough study design, selection criteria, and data analysis techniques to guarantee the integrity and dependability of the findings. The complex relationship between nanoparticles and regenerative processes is elucidated through findings and discussions, which also highlight significant turning points and the development of nanoparticle drug delivery systems as a pillar of regenerative medicine. This review concludes by summarizing the revolutionary field of nanoparticle-enhanced regenerative medicines and predicting a time when injured tissues would not only be mended but also effectively and precisely regenerated, bringing in a new era of individualized and regenerative healthcare.
References
1. R. P. Friedrich, I. Cicha, and C. Alexiou, "Iron oxide nanoparticles in regenerative medicine and tissue engineering," Nanomaterials, vol. 11, p. 2337, 2021.
2. A. Bayes-Genis, P. Gastelurrutia, M.-L. Cámara, A. Teis, J. Lupón, C. Llibre, E. Zamora, X. Alomar, X. Ruyra, and S. Roura, "First-in-man safety and efficacy of the adipose graft transposition procedure (AGTP) in patients with a myocardial scar," EBioMedicine, vol. 7, pp. 248-254, 2016.
3. K. Chaudhury, V. Kumar, J. Kandasamy, and S. RoyChoudhury, "Regenerative nanomedicine: current perspectives and future directions," International Journal of Nanomedicine, pp. 4153-4167, 2014.
4. J. Bartunek, A. Terzic, B. A. Davison, G. S. Filippatos, S. Radovanovic, B. Beleslin, B. Merkely, P. Musialek, W. Wojakowski, and P. Andreka, "Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial," European heart journal, vol. 38, pp. 648-660, 2017.
5. M. Fathi-Achachelouei, H. Knopf-Marques, C. E. Ribeiro da Silva, J. Barthès, E. Bat, A. Tezcaner, and N. E. Vrana, "Use of nanoparticles in tissue engineering and regenerative medicine," Frontiers in bioengineering and biotechnology, vol. 7, p. 113, 2019.
6. I. Martin, P. J. Simmons, and D. F. Williams, "Manufacturing challenges in regenerative medicine," Science translational medicine, vol. 6, pp. 232fs16-232fs16, 2014.
7. Q. Ullah, M. Qasim, A. Abaidullah, R. Afzal, A. Mahmood, A. Fatima, and I. Haidri, "EXPLORING THE INFLUENCE OF NANOPARTICLES AND PGPRS ON THE PHYSICO-CHEMICAL CHARACTERISTICS OF WHEAT PLANTS: A REVIEW," EPH-International Journal of Agriculture and Environmental Research, vol. 10, pp. 1-9, 2024.
8. L. Zhang and T. J. Webster, "Nanotechnology and nanomaterials: promises for improved tissue regeneration," Nano today, vol. 4, pp. 66-80, 2009.
9. C. Ding, L. Tong, J. Feng, and J. Fu, "Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment," Molecules, vol. 21, p. 1715, 2016.
10. A. Petrosyan, P. N. Martins, K. Solez, B. E. Uygun, V. S. Gorantla, and G. Orlando, "Regenerative medicine applications: An overview of clinical trials," Frontiers in Bioengineering and Biotechnology, vol. 10, p. 942750, 2022.
11. A. Porcellini, "Regenerative medicine: a review," Revista Brasileira de Hematologia e Hemoterapia, vol. 31, pp. 63-66, 2009.
12. J. S. Rink, M. P. Plebanek, S. Tripathy, and C. S. Thaxton, "Update on current and potential nanoparticle cancer therapies," Current Opinion in Oncology, vol. 25, pp. 646-651, 2013.
13. Q. Vu, K. Xie, M. Eckert, W. Zhao, and S. C. Cramer, "Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke," Neurology, vol. 82, pp. 1277-1286, 2014.
14. Y. Shi, Y. Wang, Q. Li, K. Liu, J. Hou, C. Shao, and Y. Wang, "Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases," Nature Reviews Nephrology, vol. 14, pp. 493-507, 2018.
15. A. Saad, A. B. Dietz, S. M. Herrmann, L. J. Hickson, J. F. Glockner, M. A. McKusick, S. Misra, H. Bjarnason, A. S. Armstrong, and D. A. Gastineau, "Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease," Journal of the American Society of Nephrology: JASN, vol. 28, p. 2777, 2017.
16. L. Ye, L. Li, B. Wan, M. Yang, J. Hong, W. Gu, W. Wang, and G. Ning, "Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus," Stem Cell Research & Therapy, vol. 8, pp. 1-10, 2017.
17. H. Zhang, J. Liang, X. Tang, D. Wang, X. Feng, F. Wang, B. Hua, H. Wang, and L. Sun, "Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis," Arthritis Research & Therapy, vol. 19, pp. 1-8, 2017.
18. V. Tanavde, C. Vaz, M. S. Rao, M. C. Vemuri, and R. R. Pochampally, "Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material," Cytotherapy, vol. 17, pp. 1169-1177, 2015.
19. E. M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, and B. Conti, "Skin wound healing process and new emerging technologies for skin wound care and regeneration," Pharmaceutics, vol. 12, p. 735, 2020.
20. C. Pang, A. Ibrahim, N. W. Bulstrode, and P. Ferretti, "An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing," International Wound Journal, vol. 14, pp. 450-459, 2017.
21. K. Safferling, T. Sütterlin, K. Westphal, C. Ernst, K. Breuhahn, M. James, D. Jäger, N. Halama, and N. Grabe, "Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models," Journal of Cell Biology, vol. 203, pp. 691-709, 2013.
22. N. Sahin and H. Yesil, "Regenerative methods in osteoarthritis," Best Practice & Research Clinical Rheumatology, p. 101824, 2023.
23. S. L. Kolasinski, T. Neogi, M. C. Hochberg, C. Oatis, G. Guyatt, J. Block, L. Callahan, C. Copenhaver, C. Dodge, and D. Felson, "2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee," Arthritis & rheumatology, vol. 72, pp. 220-233, 2020.
24. J. M. Patel, K. S. Saleh, J. A. Burdick, and R. L. Mauck, "Bioactive factors for cartilage repair and regeneration: improving delivery, retention, and activity," Acta Biomaterialia, vol. 93, pp. 222-238, 2019.
25. G.-I. Im, "Tissue engineering in osteoarthritis: current status and prospect of mesenchymal stem cell therapy," BioDrugs, vol. 32, pp. 183-192, 2018.
26. B. M. Devitt, S. W. Bell, K. E. Webster, J. A. Feller, and T. S. Whitehead, "Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials," The Knee, vol. 24, pp. 508-517, 2017.
27. L. Kong, L.-Z. Zheng, L. Qin, and K. K. Ho, "Role of mesenchymal stem cells in osteoarthritis treatment," Journal of orthopaedic translation, vol. 9, pp. 89-103, 2017.
28. Y. Ju, L. Yi, C. Li, T. Wang, W. Zhang, W. Chai, X. Yin, and T. Weng, "Comparison of biological characteristics of human adipose-and umbilical cord-derived mesenchymal stem cells and their effects on delaying the progression of osteoarthritis in a rat model," Acta histochemica, vol. 124, p. 151911, 2022.
29. F. Migliorini, B. Rath, G. Colarossi, A. Driessen, M. Tingart, M. Niewiera, and J. Eschweiler, "Improved outcomes after mesenchymal stem cells injections for knee osteoarthritis: results at 12-months follow-up: a systematic review of the literature," Archives of orthopaedic and trauma surgery, vol. 140, pp. 853-868, 2020.
30. C. R. Harrell, B. S. Markovic, C. Fellabaum, A. Arsenijevic, and V. Volarevic, "Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives," Biomedicine & pharmacotherapy, vol. 109, pp. 2318-2326, 2019.
31. W. Dai, X. Leng, J. Wang, Z. Shi, J. Cheng, X. Hu, and Y. Ao, "Intra-articular mesenchymal stromal cell injections are no different from placebo in the treatment of knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials," Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 37, pp. 340-358, 2021.
32. G. A. Ateshian, "Weaving in three dimensions," Nature materials, vol. 6, pp. 89-90, 2007.
33. D. Nesic, R. Whiteside, M. Brittberg, D. Wendt, I. Martin, and P. Mainil-Varlet, "Cartilage tissue engineering for degenerative joint disease," Advanced drug delivery reviews, vol. 58, pp. 300-322, 2006.
34. J. L. Drury and D. J. Mooney, "Hydrogels for tissue engineering: scaffold design variables and applications," Biomaterials, vol. 24, pp. 4337-4351, 2003.
35. C. Vinatier, D. Magne, A. Moreau, O. Gauthier, O. Malard, C. Vignes‐Colombeix, G. Daculsi, P. Weiss, and J. Guicheux, "Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 80, pp. 66-74, 2007.
36. J. Malda, C. Van Blitterswijk, M. Grojec, D. Martens, J. Tramper, and J. Riesle, "Expansion of bovine chondrocytes on microcarriers enhances redifferentiation," Tissue engineering, vol. 9, pp. 939-948, 2003.
37. J. P. A. Arokoski, J. Jurvelin, U. Väätäinen, and H. Helminen, "Normal and pathological adaptations of articular cartilage to joint loading," Scandinavian Journal of Medicine & Science in Sports: Review article, vol. 10, pp. 186-198, 2000.
38. [38] M. Hirao, N. Tamai, N. Tsumaki, H. Yoshikawa, and A. Myoui, "Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification," Journal of Biological Chemistry, vol. 281, pp. 31079-31092, 2006.
39. [39] A. Saraf and A. G. Mikos, "Gene delivery strategies for cartilage tissue engineering," Advanced drug delivery reviews, vol. 58, pp. 592-603, 2006.
40. R. P. Friedrich, C. Janko, H. Unterweger, S. Lyer, and C. Alexiou, "SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications," Physical Sciences Reviews, vol. 8, pp. 1435-1464, 2023.
41. I. Cicha and C. Alexiou, "Cardiovascular applications of magnetic particles," Journal of Magnetism and Magnetic Materials, vol. 518, p. 167428, 2021.
42. N. Ashammakhi, O. Kaarela, and P. Ferretti, "Pulling and pushing stem cells to control their differentiation," Journal of Craniofacial Surgery, vol. 29, pp. 804-806, 2018.
43. Y. Li, D. Ye, M. Li, M. Ma, and N. Gu, "Adaptive materials based on iron oxide nanoparticles for bone regeneration," ChemPhysChem, vol. 19, pp. 1965-1979, 2018.
44. Q. Wang, B. Chen, M. Cao, J. Sun, H. Wu, P. Zhao, J. Xing, Y. Yang, X. Zhang, and M. Ji, "Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs," Biomaterials, vol. 86, pp. 11-20, 2016.
45. F. Schulze, A. Gramoun, L. A. Crowe, A. Dienelt, T. Akcan, H. Hofmann, J.-P. Vallee, G. N. Duda, and A. Ode, "Accumulation of amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles in bone marrow: implications for local stromal cells," Nanomedicine, vol. 10, pp. 2139-2151, 2015.
46. M. Rotherham, J. R. Henstock, O. Qutachi, and A. J. El Haj, "Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 14, pp. 173-184, 2018.
47. T. A. Kolagar, M. Farzaneh, N. Nikkar, and S. E. Khoshnam, "Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations," Current stem cell research & therapy, vol. 15, pp. 102-110, 2020.
48. R. Friedrich, I. Cicha, and C. Alexiou, "Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials 2021, 11, 2337," ed: s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2021.
49. S. J. Gwak, H. Koo, Y. Yun, J. Y. Yhee, H. Y. Lee, D. H. Yoon, K. Kim, and Y. Ha, "Multifunctional nanoparticles for gene delivery and spinal cord injury," Journal of Biomedical Materials Research Part A, vol. 103, pp. 3474-3482, 2015.
50. P. A. Soto, M. Vence, G. M. Piñero, D. F. Coral, V. Usach, D. Muraca, A. Cueto, A. Roig, M. B. F. Van Raap, and C. P. Setton-Avruj, "Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells," Acta biomaterialia, vol. 130, pp. 234-247, 2021.
51. A. Umashankar, M. J. Corenblum, S. Ray, M. Valdez, E. S. Yoshimaru, T. P. Trouard, and L. Madhavan, "Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation," International journal of nanomedicine, pp. 1731-1748, 2016.
52. M. Roet, S.-A. Hescham, A. Jahanshahi, B. P. Rutten, P. O. Anikeeva, and Y. Temel, "Progress in neuromodulation of the brain: A role for magnetic nanoparticles?," Progress in neurobiology, vol. 177, pp. 1-14, 2019.
53. S. Lee, S. Seon, K. Park, and J. Ryu, "Vocal fold reconstruction using an autologous pedicled fat flap in a rabbit model," The Laryngoscope, vol. 130, pp. 1770-1774, 2020.
54. M. Pöttler, A. Fliedner, J. Bergmann, L. K. Bui, M. Mühlberger, C. Braun, M. Graw, C. Janko, O. Friedrich, and C. Alexiou, "Magnetic tissue engineering of the vocal fold using superparamagnetic iron oxide nanoparticles," Tissue Engineering Part A, vol. 25, pp. 1470-1477, 2019.
55. M. L. Soriano, A. Rodríguez-Benot, and M. Valcárcel, "Nanotechnological foundations of a “new” Nephrology," Nefrología (English Edition), vol. 38, pp. 362-372, 2018.
56. A. Eftekhari, A. Arjmand, A. Asheghvatan, H. Švajdlenková, O. Šauša, H. Abiyev, E. Ahmadian, O. Smutok, R. Khalilov, and T. Kavetskyy, "The potential application of magnetic nanoparticles for liver fibrosis theranostics," Frontiers in Chemistry, vol. 9, p. 674786, 2021.
57. D. W. Kurniawan, R. Booijink, L. Pater, I. Wols, A. Vrynas, G. Storm, J. Prakash, and R. Bansal, "Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo," Journal of controlled release, vol. 328, pp. 640-652, 2020.
58. H. Li, Y. Yin, Y. Xiang, H. Liu, and R. Guo, "A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair," Biomedical Materials, vol. 15, p. 045004, 2020.
59. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. Kenny, "Biodegradable polymer matrix nanocomposites for tissue engineering: a review," Polymer degradation and stability, vol. 95, pp. 2126-2146, 2010.
60. I. Haidri, M. Qasim, M. Shahid, M. M. Farooq, M. Q. Abbas, R. Fatima, W. Shoukat, and Q. Ullah, "Enhancing the Antioxidant Enzyme Activities and Soil Microbial Biomass of tomato plants against the stress of Sodium Dodecyl Sulfate by the application of bamboo biochar," Remittances Review, vol. 9, pp. 1609-1633, 2024.
61. J. Luo, S. Zhu, Y. Tong, Y. Zhang, Y. Li, L. Cao, M. Kong, M. Luo, Q. Bi, and Q. Zhang, "Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway," Biological Trace Element Research, vol. 201, pp. 865-873, 2023.
62. S. Oter, S. Jin, L. Cucullo, and H. D. Dorman, "Oxidants and antioxidants: friends or foes?," Oxidants and antioxidants in medical science, vol. 1, p. 1, 2012.
63. H. Sies, "Oxidative stress: a concept in redox biology and medicine," Redox biology, vol. 4, pp. 180-183, 2015.
64. X. Chen, C. Guo, and J. Kong, "Oxidative stress in neurodegenerative diseases," Neural regeneration research, vol. 7, p. 376, 2012.
65. S. Perveen, I. A. Bhatti, S. Jamil, A. Ghaffar, A. Faiz, and R. Sulaiman, "Carbon Dots: Synthetic Routes, Optical Properties, and Emerging Applications."
66. M. Passi, V. Kumar, and G. Packirisamy, "Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress," Materials Science and Engineering: C, vol. 107, p. 110255, 2020.
67. S. K. Nethi, H. S. Nanda, T. W. Steele, and C. R. Patra, "Functionalized nanoceria exhibit improved angiogenic properties," Journal of Materials Chemistry B, vol. 5, pp. 9371-9383, 2017.
68. U. S. Ezealigo, B. N. Ezealigo, S. O. Aisida, and F. I. Ezema, "Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective," JCIS Open, vol. 4, p. 100027, 2021.
69. A. M. Bailey, M. Mendicino, and P. Au, "An FDA perspective on preclinical development of cell-based regenerative medicine products," Nature biotechnology, vol. 32, pp. 721-723, 2014.
70. I. T. Ozbolat, K. K. Moncal, and H. Gudapati, "Evaluation of bioprinter technologies," Additive Manufacturing, vol. 13, pp. 179-200, 2017.
71. Y.-J. Seol, H.-W. Kang, S. J. Lee, A. Atala, and J. J. Yoo, "Bioprinting technology and its applications," European Journal of Cardio-Thoracic Surgery, vol. 46, pp. 342-348, 2014.
72. I. T. Ozbolat and M. Hospodiuk, "Current advances and future perspectives in extrusion-based bioprinting," Biomaterials, vol. 76, pp. 321-343, 2016.
73. P. Shankar, J. Jagtap, G. Sharma, G. P. Sharma, J. Singh, M. Parashar, G. Kumar, S. Mittal, M. K. Sharma, and K. Jadhav, "A revolutionary breakthrough of bionanomaterials in tissue engineering and regenerative medicine," in Bionanotechnology: Emerging Applications of Bionanomaterials, ed: Elsevier, 2022, pp. 399-441.
74. P. Datta, B. Ayan, and I. T. Ozbolat, "Bioprinting for vascular and vascularized tissue biofabrication," Acta biomaterialia, vol. 51, pp. 1-20, 2017.
75. R. M. Hoffman, "Histocultures and their use," eLS, 2010.
76. J. M. Lee, P. Mhawech-Fauceglia, N. Lee, L. C. Parsanian, Y. G. Lin, S. A. Gayther, and K. Lawrenson, "A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro," Laboratory investigation, vol. 93, pp. 528-542, 2013.
77. M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T.-M. G. Chu, M. J. Kowolik, and G. M. Janowski, "Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective," Dental materials, vol. 28, pp. 703-721, 2012.
78. T. M. Allen and P. R. Cullis, "Liposomal drug delivery systems: from concept to clinical applications," Advanced drug delivery reviews, vol. 65, pp. 36-48, 2013.
79. M. Sugano, Y. Negishi, Y. Endo-Takahashi, R. Suzuki, K. Maruyama, M. Yamamoto, and Y. Aramaki, "Gene delivery system involving Bubble liposomes and ultrasound for the efficient in vivo delivery of genes into mouse tongue tissue," International journal of pharmaceutics, vol. 422, pp. 332-337, 2012.
80. J. Kunisawa, T. Nakanishi, I. Takahashi, A. Okudaira, Y. Tsutsumi, K. Katayama, S. Nakagawa, H. Kiyono, and T. Mayumi, "Sendai virus fusion protein-mediates simultaneous induction of MHC class I/II-dependent mucosal and systemic immune responses via the nasopharyngeal-associated lymphoreticular tissue immune system," The Journal of Immunology, vol. 167, pp. 1406-1412, 2001.
81. A. Viniegra, H. Goldberg, Ç. Çil, N. Fine, Z. Sheikh, M. Galli, M. Freire, Y. Wang, T. Van Dyke, and M. Glogauer, "Resolving macrophages counter osteolysis by anabolic actions on bone cells," Journal of Dental Research, vol. 97, pp. 1160-1169, 2018.
82. D. Liu and P. Yang, "Minocycline hydrochloride nanoliposomes inhibit the production of TNF-α in LPS-stimulated macrophages," International journal of nanomedicine, pp. 4769-4775, 2012.
83. A. Jain, R. Kumari, A. Tiwari, A. Verma, A. Tripathi, A. Shrivastava, and S. K. Jain, "Nanocarrier based advances in drug delivery to tumor: an overview," Current drug targets, vol. 19, pp. 1498-1518, 2018.
84. A. Safdar, R. Bibi, I. Ilyas, S. Irum, S. Fatima, R. Sikandar, R. Fatima, and M. Qasim, "Botany, ethnopharmacology, phytochemistry and toxicology of Ricinus communis L. A comprehensive."
85. M. Chi, M. Qi, P. Wang, M. D. Weir, M. A. Melo, X. Sun, B. Dong, C. Li, J. Wu, and L. Wang, "Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms," International journal of molecular sciences, vol. 20, p. 278, 2019.
86. S. Ul Hassan, B. Bilal, M. S. Nazir, S. A. R. Naqvi, Z. Ali, S. Nadeem, N. Muhammad, B. A. Palvasha, and A. Mohyuddin, "Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration," Chemical biology & drug design, vol. 98, pp. 1007-1024, 2021.
87. A. K. Sah, M. Dewangan, and P. K. Suresh, "Potential of chitosan-based carrier for periodontal drug delivery," Colloids and Surfaces B: Biointerfaces, vol. 178, pp. 185-198, 2019.
88. J. C. Cuggino, M. Molina, S. Wedepohl, C. I. A. Igarzabal, M. Calderón, and L. M. Gugliotta, "Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems," European Polymer Journal, vol. 78, pp. 14-24, 2016.
89. S. Gulameabasse, F. Gindraux, S. Catros, J. C. Fricain, and M. Fenelon, "Chorion and amnion/chorion membranes in oral and periodontal surgery: A systematic review," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 109, pp. 1216-1229, 2021.
90. S. Peng, G. Zhou, K. D. Luk, K. M. Cheung, Z. Li, W. M. Lam, Z. Zhou, and W. W. Lu, "Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway," Cellular Physiology and Biochemistry, vol. 23, pp. 165-174, 2009.
91. D. Sriranganathan, N. Kanwal, K. A. Hing, and R. G. Hill, "Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate," Journal of Materials Science: Materials in Medicine, vol. 27, pp. 1-10, 2016.
92. R. Sulaiman, A. Ghaffar, S. Perveen, D. Ashraf, I. Tariq, and T. Shakir, "Synthesis, Characterization, and Biomedical Applications of Zinc Oxide Nanoparticles," BME Horizon, vol. 1, 2023.
93. M. Waseem, M. Q. Abbas, K. Ummer, R. Fatima, W. Khan, F. Gulzar, M. Qasim, Q. Ullah, and I. Haidri, "PHYTO-REMEDIES FOR SOIL RESTORATION: A DEEP DIVE INTO BRASSICA'S PLANT CAPABILITIES IN CADMIUM REMOVAL," EPH-International Journal of Biological & Pharmaceutical Science, vol. 9, pp. 23-44, 2023.
94. A. E. Pazarçeviren, A. Tezcaner, D. Keskin, S. T. Kolukısa, S. Sürdem, and Z. Evis, "Boron-doped biphasic hydroxyapatite/β-tricalcium phosphate for bone tissue engineering," Biological Trace Element Research, vol. 199, pp. 968-980, 2021.