UNLOCKING CRISPR/CAS POTENTIAL TO TACKLE MULTI-DRUG RESISTANT PATHOGENS

Main Article Content

Saba Abbas
Hafiz Khawar
Hafiza Nida Shehzadi
Hafiz Muhammad Owais Khalid
Urooj Zubair
Mian Zahid Sarfraz
Hamza Akram Tarar
Ali Raza Nawab
Fabiha Shahid

Keywords

Multi Drug resistance, CRISPR Cas, Cas 9, ESKAPE pathogens

Abstract

Rapid emergence of multi drug resistant super bugs is a major concern for the health of individual world wide. In this scientific era antibiotic resistance is still one of the most leading cause of death among patients. In order to combat this deadly problem latest strategies have been suggested that deal with notorious infections causing  pathogenic bacteria. The most common and widely used treatment is prescription of antibiotic drugs. Antibiotics are losing their effectiveness day by day as most of the bacteria has developed resistance against them. It has been proved that these pathogenic organisms are using both phenotypes and genetic modifications in order to enable a natural defence against antibiotics and this lead to elevated resistance to the class of antibiotic that has been used. The clustered regularly interspaced palindromic repeats CRISPR Cas system is promising tool in terms of eliminating resistance. It is a part of bacterial immune system and bacteria uses this system to protect it self from various viruses and bacteriophages. CRISPR Cas is an effective tool for diagnosis and treatment of infections caused by Multi Drug resistant bacteria. CRISPR Cas is a programmable tool that can act as an efficient antibiotic tool in terms of dealing with MDR pathogens. This tool can be exploited against pathogens and it can eliminate pathogen on basis of sequence specific manner. CRISPR-Cas9 technology is a genome-editing tool that has various applications in cell lines, plants, animals, and even in human clinical trials, and it is seriously being considered as a safe and effective tool for eliminating MDR.


Multidrug resistant pathogens are causing mortality and morbidity in patients and lead to prolong treatment. Bacteria has developed resistance against antibiotics causing them to be ineffective. To deal with rising issue of antibiotic resistance CRISPR Cas system is a life saving tool that can potentially fight against the superbugs and remove them.

Abstract 545 | PDF Downloads 125

References

1. Wang, R., Shu, X., Zhao, H., Xue, Q., Liu, C., Wu, A., & Li, M. (2023). Associate toxin-antitoxin with CRISPR-Cas to kill multidrug-resistant pathogens. Nature Communications, 14(1), 2078.
2. Costanzo, V., & Roviello, G. N. (2023). The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines, 11(2), 333.
3. Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021.
4. Adrizain, R., Suryaningrat, F., Alam, A., & Setiabudi, D. (2018, March). Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 125, p. 012077). IOP Publishing.
5. Zohra, T., Numan, M., Ikram, A., Salman, M., Khan, T., Din, M., ... & Ali, M. (2021). Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms, 9(5), 954.
6. Kundar, R., & Gokarn, K. (2022). CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals, 15(12), 1498.
7. Jorge, P., Magalhães, A. P., Grainha, T., Alves, D., Sousa, A. M., Lopes, S. P., & Pereira, M. O. (2019). Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiology Ecology, 95(8), fiz115.
8. Bharti, Parul Bali, Naveen Minhas et al. Isolation and characterization of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacterial pathogens from diverse environmental niches of Shimla, Himachal Pradesh (India), 03 February 2023.
9. Tiseo, G., Brigante, G., Giacobbe, D. R., Maraolo, A. E., Gona, F., Falcone, M., & Tinelli, M. (2022). Diagnosis and management of infections caused by multidrug-resistant bacteria: Guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). International Journal of Antimicrobial Agents, 60(2), 106611.
10. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers in microbiology, 10, 539.
11. De Oliveira, D. M., Forde, B. M., Kidd, T. J., Harris, P. N., Schembri, M. A., Beatson, S. A., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical microbiology reviews, 33(3), 10-1128.
12. Gholizadeh, P., Köse, Ş., Dao, S., Ganbarov, K., Tanomand, A., Dal, T., & Samadi Kafil, H. (2020). How CRISPR-Cas system could be used to combat antimicrobial resistance. Infection and drug resistance, 1111-1121.
13. Odoyo, E., Matano, D., Tiria, F., Georges, M., Kyanya, C., Wahome, S., & Musila, L. (2023). Environmental contamination across multiple hospital departments with multidrug-resistant bacteria pose an elevated risk of healthcare-associated infections in Kenyan hospitals. Antimicrobial Resistance & Infection Control, 12(1), 1-9.
14. Singh, S., Datta, S., Narayanan, K. B., & Rajnish, K. N. (2021). Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 1-19.
15. Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10.
16. Akbar, G., Zia, M. A., Ahmad, A., & Arooj, N. (2020). 10. Review on-Genome editing tool to combat with multidrug resistant bacteria: Challenges and future perspectives. Pure and Applied Biology (PAB), 9(4), 2441-2455.
17. Wu, Y., Battalapalli, D., Hakeem, M. J., Selamneni, V., Zhang, P., Draz, M. S., & Ruan, Z. (2021). Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. Journal of nanobiotechnology, 19(1), 1-26.
18. Palacios Araya, D., Palmer, K. L., & Duerkop, B. A. (2021). CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathogens, 17(7), e1009672.
19. Baiko, O., & Klochko, V. (2023). THE USE OF CRISPR/CAS SYSTEMS AS AN ALTERNATIVE TOOL TO OVERCOME ANTIBIOTIC RESISTANCE. Біотехнологія XXI століття, 35-38.
20. Duan, C., Cao, H., Zhang, L. H., & Xu, Z. (2021). Harnessing the CRISPR-Cas systems to combat antimicrobial resistance. Frontiers in Microbiology, 12, 716064.
21. Selle, K., Fletcher, J. R., Tuson, H., Schmitt, D. S., McMillan, L., Vridhambal, G. S., & Ousterout, D. G. (2020). In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. MBio, 11(2), 10-1128.
22. Lima, R., Del Fiol, F. S., & Balcão, V. M. (2019). Prospects for the use of new technologies to combat multidrug-resistant bacteria. Frontiers in Pharmacology, 10, 692.
23. Padilha, V. A., Alkhnbashi, O. S., Shah, S. A., de Carvalho, A. C., & Backofen, R. (2020). CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems. GigaScience, 9(6), giaa062.
24. Chaudhary, M. F., Saleem, U., Khan, S., Khan, R., & Jehanzaib, M. (2021). Cancer Therapy with CRISPR/Cas9: Prospects and Challenges. International Journal of Environment, Agriculture and Biotechnology, 6, 3.
25. Hillary, V. E., & Ceasar, S. A. (2023). A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology, 65(3), 311-325.
26. Lee, H., Dhingra, Y., & Sashital, D. G. (2019). The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. Elife, 8, e44248.
27. Almendros, C., Nobrega, F. L., McKenzie, R. E., & Brouns, S. J. J. (2019). Cas4–Cas1 fusions drive efficient PAM selection and control CRISPR adaptation. Nucleic acids research, 47(10), 5223-5230.
28. Chourasia, J., Gholizadeh, P., Kse, S., Dao, S., Ganbarov, K., Tanomand, A., ... & Kafil, H. S. The Engineered CRISPR-CAS System is a Beneficial Biological Tool for Detecting and Combating Antibiotic Resistance Microbes.
29. Kim, T. H., & Lee, S. W. (2022). Therapeutic Application of Genome Editing Technologies in Viral Diseases. International Journal of Molecular Sciences, 23(10), 5399.
30. Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J., & Bijak, M. (2020). Various aspects of a gene editing system—crispr–cas9. International Journal of Molecular Sciences, 21(24), 9604.
31. Shabbir, M. A. B., Shabbir, M. Z., Wu, Q., Mahmood, S., Sajid, A., Maan, M. K., & Yuan, Z. (2019). CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of clinical microbiology and antimicrobials, 18, 1-9.
32. Li, R., Wang, Q., She, K., Lu, F., & Yang, Y. (2022). CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 3(1), 31.
33. Wang, X., Shang, X., & Huang, X. (2020). Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. Emerging microbes & infections, 9(1), 1682-1691.
34. Aslam, B., Rasool, M., Idris, A., Muzammil, S., Alvi, R. F., Khurshid, M., & Baloch, Z. (2020). CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrobial Resistance & Infection Control, 9(1), 1-3.
35. Javed, M. U., Hayat, M. T., Mukhtar, H., & Imre, K. (2023). CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics, 12(6), 1075.
36. Zhang, F., & Cheng, W. (2022). The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics, 11(9), 1215.
37. Getahun, Y. A., Ali, D. A., Taye, B. W., & Alemayehu, Y. A. (2022). Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. Veterinary Medicine: Research and Reports, 173-190.
38. Pereira, H. S., Tagliaferri, T. L., & Mendes, T. A. D. O. (2021). Enlarging the toolbox against antimicrobial resistance: aptamers and CRISPR-Cas. Frontiers in Microbiology, 12, 606360.
39. Balcha, F. B., & Neja, S. A. (2023). CRISPR-Cas9 mediated phage therapy as an alternative to antibiotics. Animal Diseases, 3(1), 1-11.
40. Wei, J., Peng, N., Liang, Y., Li, K., & Li, Y. (2020). Phage therapy: consider the past, embrace the future. Applied Sciences, 10(21), 7654.
41. Martin, J. K., Sheehan, J. P., Bratton, B. P., Moore, G. M., Mateus, A., Li, S. H. J., & Gitai, Z. (2020). A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell, 181(7), 1518-1532.
42. Gajdács, M., Urbán, E., Stájer, A., & Baráth, Z. (2021). Antimicrobial resistance in the context of the sustainable development goals: A brief review. European Journal of Investigation in Health, Psychology and Education, 11(1), 71-82.
43. Zhu, Y., Huang, W. E., & Yang, Q. (2022). Clinical perspective of antimicrobial resistance in bacteria. Infection and drug resistance, 735-746.
44. O’Neill, J. (2014). The Review on Antimicrobial Resistance Chaired by Jim O’Neill. 2015. Tackling a global health crisis: initial steps.
45. Zohra, T., Numan, M., Ikram, A., Salman, M., Khan, T., Din, M., & Ali, M. (2021). Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms, 9(5), 954.
46. Ukuhor, H. O. (2021). The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. Journal of Infection and Public Health, 14(1), 53-60.
47. Aranaga, C., Pantoja, L. D., Martínez, E. A., & Falco, A. (2022). Phage therapy in the era of multidrug resistance in bacteria: A systematic review. International Journal of Molecular Sciences, 23(9), 4577.
48. Wei, J., Peng, N., Liang, Y., Li, K., & Li, Y. (2020). Phage therapy: consider the past, embrace the future. Applied Sciences, 10(21), 7654.
49. Singh, S., Datta, S., Narayanan, K. B., & Rajnish, K. N. (2021). Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 1-19.
50. Tao, J., Bauer, D. E., & Chiarle, R. (2023). Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 14(1), 212.
51. Liu, Z., Dong, H., Cui, Y., Cong, L., & Zhang, D. (2020). Application of different types of CRISPR/Cas-based systems in bacteria. Microbial cell factories, 19(1), 1-14.
52. Loureiro, A., & da Silva, G. J. (2019). Crispr-cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics, 8(1), 18.
53. Nath, A., Bhattacharjee, R., Nandi, A., Sinha, A., Kar, S., Manoharan, N., & Suar, M. (2022). Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomedicine & Pharmacotherapy, 151, 113122.
54. Javed, M. U., Hayat, M. T., Mukhtar, H., & Imre, K.(2023). CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics, 12(6), 1075.
55. Selle, K., & Barrangou, R. (2015). Harnessing CRISPR–Cas systems for bacterial genome editing. Trends in microbiology, 23(4), 225-232.
56. González de Aledo, M., González-Bardanca, M., Blasco, L., Pacios, O., Bleriot, I., Fernández-García, L., & Tomás, M. (2021). CRISPR-Cas, a revolution in the treatment and study of ESKAPE infections: pre-clinical studies. Antibiotics, 10(7), 756.
57. Yang, X., Ye, W., Qi, Y., Ying, Y., & Xia, Z. (2021). Overcoming multidrug resistance in bacteria through antibiotics delivery in surface-engineered nano-cargos: Recent developments for future nano-antibiotics. Frontiers in Bioengineering and Biotechnology, 9, 696514.
58. Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: a study. Journal of pathogens, 2016.
59. Shaglouf, K. R. (2018). Modified Bacteriophage to Kill Multidrug Resistant Bacteria.
60. Tao, S., Chen, H., Li, N., & Liang, W. (2022). The application of the CRISPR-Cas system in antibiotic resistance. Infection and drug resistance, 4155-4168.
61. Xu, Z., Li, Y., Li, M., Xiang, H., & Yan, A. (2021). Harnessing the type I CRISPR‐Cas systems for genome editing in prokaryotes. Environmental Microbiology, 23(2), 542-558.
62. Liu, M. (2020). Research progress of CRISPR-Cas system application. Chronic Disease Prevention Review, 15, 1-4.

Most read articles by the same author(s)