Main Article Content

Najeeb Ullah, Munir Ahmad Bhinder, Bisma Rauff , Leena Moaaz Hashim Mohamedain, Hafsa Sunniya, Saba Adam, Faiza Munir, Jeand Baloch


Cataract, Conservation Analysis, Protein Structure Analysis, Bioinformatics


Cataract is a disorder of eye lens where an opaque lens causes the blurred vision. Occurrence of cataract is common around the world and its causes range from environmental reasons to genetic mutations. Genetic cataract is heterogeneous in nature and several hundred genes are discovered to this day, reported to cause cataract. This study involves in-silico analysis of an already known cataract causing mutation (c.233G>A) in order to ascertain the impact of this mutation in mutated protein. Bioinformatics tools were employed to calculate and compare physical parameters of mutated protein with that of its normal copy. Calculating physical parameters illustrated that mutated protein has higher polarity, lower hydrophobicity and enhanced refractivity. Conservation analysis identified that resulting mutated residue p.G78G is residing in a highly conserved region and this mutation has damaging impact. Three dimensional structures of both wild and mutant MP19 protein were predicted using I-Tasser tool and structures with highest quality score were selected. Predicted structure of wild MP19 protein was validated through Ramachandran plot and Z-score calculations using Procheck and PROSA web tools, respectively. The mutation (p.G78D) was characterised in wild MP19 protein model and was viewed through Chimera tool. In-silico analysis predicted that mutation p.G78G may bring about  changes of clinical significance.

Abstract 32 | PDF Downloads 13


Aadland, K., Pugh, C., Kolaczkowski, B., 2019. High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function. Methods Mol Biol 1851, 135–170.

Ashraf, A., Ullah, N., Ahmad, G., 2018. Rat as an animal model for studying glutaredoxin-5 gene. Pak J Pharm Sci 31, 1301–1310.

Bassnett, S., Costello, M.J., 2017. The cause and consequence of fiber cell compaction in the vertebrate lens. Exp Eye Res 156, 50–57.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The Protein Data Bank. Nucleic Acids Research 28, 235–242.

Bhinder, M.A., 2017. Consanguineous marriage: A peril for coming generation. Journal of Genetic Disorders 1, 8.

Bhinder, M.A., Sadia, H., Mahmood, N., Qasim, M., Hussain, Z., Rashid, M.M., Zahoor, M.Y., Bhatti, R., Shehzad, W., Waryah, A.M., Jahan, S., 2019. Consanguinity: A blessing or menace at population level? Ann Hum Genet 83, 214–219.

Chen, J., Wang, Q., Cabrera, P.E., Zhong, Z., Sun, W., Jiao, X., Chen, Y., Govindarajan, G., Naeem, M.A., Khan, S.N., Ali, M.H., Assir, M.Z., Rahman, F.U., Qazi, Z.A., Riazuddin, S., Akram, J., Riazuddin, S.A., Hejtmancik, J.F., 2017. Molecular Genetic Analysis of Pakistani Families With Autosomal Recessive Congenital Cataracts by Homozygosity Screening. Invest. Ophthalmol. Vis. Sci. 58, 2207.
del Castillo, F.J., Cohen-Salmon, M., Charollais, A., Caille, D., Lampe, P.D., Chavrier, P., Meda, P., Petit, C., 2010. Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 19, 262–275.

Duderstadt, K.E., Berger, J.M., 2008. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 43, 163–187.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A., 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784–3788.

Home | Cat-Map | Washington University in St. Louis [WWW Document], n.d. URL (accessed 8.5.23).

Irum, B., Khan, S.Y., Ali, M., Daud, M., Kabir, F., Rauf, B., Fatima, F., Iqbal, H., Khan, A.O., Al Obaisi, S., Naeem, M.A., Nasir, I.A., Khan, S.N., Husnain, T., Riazuddin, S., Akram, J., Eghrari, A.O., Riazuddin, S.A., 2016. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts. PLoS ONE 11, e0167562.

Jessop, M., Felix, J., Gutsche, I., 2021. AAA+ ATPases: structural insertions under the magnifying glass. Curr Opin Struct Biol 66, 119–128.


Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477–486.

Martin, F.J., Amode, M.R., Aneja, A., Austine-Orimoloye, O., Azov, A.G., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S.K., Bignell, A., Boddu, S., Branco Lins, P.R., Brooks, L., Ramaraju, S.B., Charkhchi, M., Cockburn, A., Da Rin Fiorretto, L., Davidson, C., Dodiya, K., Donaldson, S., El Houdaigui, B., El Naboulsi, T., Fatima, R., Giron, C.G., Genez, T., Ghattaoraya, G.S., Martinez, J.G., Guijarro, C., Hardy, M., Hollis, Z., Hourlier, T., Hunt, T., Kay, M., Kaykala, V., Le, T., Lemos, D., Marques-Coelho, D., Marugán, J.C., Merino, G.A., Mirabueno, L.P., Mushtaq, A., Hossain, S.N., Ogeh, D.N., Sakthivel, M.P., Parker, A., Perry, M., Piližota, I., Prosovetskaia, I., Pérez-Silva, J.G., Salam, A.I.A., Saraiva-Agostinho, N., Schuilenburg, H., Sheppard, D., Sinha, S., Sipos, B., Stark, W., Steed, E., Sukumaran, R., Sumathipala, D., Suner, M.-M., Surapaneni, L., Sutinen, K., Szpak, M., Tricomi, F.F., Urbina-Gómez, D., Veidenberg, A., Walsh, T.A., Walts, B., Wass, E., Willhoft, N., Allen, J., Alvarez-Jarreta, J., Chakiachvili, M., Flint, B., Giorgetti, S., Haggerty, L., Ilsley, G.R., Loveland, J.E., Moore, B., Mudge, J.M., Tate, J., Thybert, D., Trevanion, S.J., Winterbottom, A., Frankish, A., Hunt, S.E., Ruffier, M., Cunningham, F., Dyer, S., Finn, R.D., Howe, K.L., Harrison, P.W., Yates, A.D., Flicek, P., 2023. Ensembl 2023. Nucleic Acids Research 51, D933–D941.

Patel, N., Anand, D., Monies, D., Maddirevula, S., Khan, A.O., Algoufi, T., Alowain, M., Faqeih, E., Alshammari, M., Qudair, A., Alsharif, H., Aljubran, F., Alsaif, H.S., Ibrahim, N., Abdulwahab, F.M., Hashem, M., Alsedairy, H., Aldahmesh, M.A., Lachke, S.A., Alkuraya, F.S., 2017. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 136, 205–225.