EVALUATION OF DISCREPANCIES BETWEEN SELF-MONITORING BLOOD GLUCOSE (SMBG) SYSTEMS AND LABORATORY MEASUREMENTS IN PATIENTS WITH DIABETES MELLITUS

Main Article Content

Abdulhadi obidallah Mater Alomari
Mohammed saleh ayad Aljohani
majed salman marzoq Alharbi
salem Saleh farasan Al balawi
Murdhi Sulaman Hamdan Albalawi
Abdulrahman Abdullah Atallah Aljohani
Mohammed Marzaq Mohammed Albalawi
Kariam Atallah alenazi
Yousef Eid alalwani
Abdullah Abdulkareem Aaish ALbalawi
Saif Sanat Mater Almutairi
Mohammed Ibrahim abdulatif zuayr
Adel Obaid Hamadan Almarwani
Muflih Hammad Sulaiman Alshawwamiyyan

Keywords

self-monitoring of blood glucose, SMBG, diabetes management, blood glucose readings, SMBG brands, laboratory readings, diabetic patients, accuracy

Abstract

Self-monitoring of blood glucose (SMBG) is crucial in diabetes care, allowing individuals to monitor their blood glucose levels and adjust their treatment plan as needed. However, the accuracy of SMBG readings can vary based on various factors, including the type of SMBG equipment and the laboratory procedure used. This study aims to examine the factors that influence the discrepancy between different SMBG brands and laboratory readings in diabetic patients. Laboratory values are considered the gold standard for assessing SMBG precision, but factors like the type of procedure, sample time, and calibration process can also affect results. Factors like hypoglycemia, hyperglycemia, and the presence of interfering drugs can also affect laboratory values. Studies have shown that SMBG readings can vary significantly from laboratory results, with some devices being more accurate than others. Factors such as the instrument's age, condition, calibration method, and testing environment also affect the accuracy of SMBG readings. Healthcare professionals should be aware of these variables and take measures to reduce them to provide the best diabetes treatment possible.

Abstract 45 | PDF Downloads 33

References

1. Ajjan, R. A., Cummings, M. H., Jennings, P., Leelarathna, L., Rayman, G., & Wilmot, E. G. (2018). Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: implications for clinical practice. Diabetes and Vascular Disease Research, 15(3), 175-184.
2. American Diabetes Association. (2018). 6. Glycemic targets: standards of medical care in diabetes—2018. Diabetes care, 41(Supplement_1), S55-S64.
3. Baumstark, A., Jendrike, N., Kamecke, U., Liebing, C., Pleus, S., & Freckmann, G. (2020). Measurement accuracy of two professional-use systems for point-of-care testing of blood glucose. Clinical Chemistry and Laboratory Medicine (CCLM), 58(3), 445-455.
4. Beriault, D. R., Gilmour, J. A., & Hicks, L. K. (2021). Overutilization in laboratory medicine: tackling the problem with quality improvement science. Critical Reviews in Clinical Laboratory Sciences, 58(6), 430-446.
5. Bruttomesso, D., Laviola, L., Avogaro, A., Bonora, E., Del Prato, S., Frontoni, S., ... & Purrello, F. (2019). The use of real time continuous glucose monitoring or flash glucose monitoring in the management of diabetes: a consensus view of Italian diabetes experts using the Delphi method. Nutrition, Metabolism and Cardiovascular Diseases, 29(5), 421-431.
6. Cappon, G., Vettoretti, M., Sparacino, G., Facchinetti, A., Kim, M. K., Ko, S. H., ... & Committee of Clinical Practice Guidelines, Korean Diabetes Association. (2019). 2019 Clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes & metabolism journal, 43(4), 398-406.
7. Chung, W. K., Erion, K., Florez, J. C., Hattersley, A. T., Hivert, M. F., Lee, C. G., ... & Franks, P. W. (2020). Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes care, 43(7), 1617-1635.
8. Cigrovski Berković, M., Bilić-Ćurčić, I., La Grasta Sabolić, L., Mrzljak, A., & Cigrovski, V. (2021). Fear of hypoglycemia, a game changer during physical activity in type 1 diabetes mellitus patients. World journal of diabetes, 12(5), 569-577.
9. Cinar, A., & Turksoy, K. (2018). Advances in Artificial Pancreas Systems: Adaptive and Multivariable Predictive Control. Springer.
10. Fiedorova, K., Augustynek, M., Kubicek, J., Kudrna, P., & Bibbo, D. (2022). Review of present method of glucose from human blood and body fluids assessment. Biosensors and Bioelectronics, 114348.
11. Freckmann, G. (2020). Basics and use of continuous glucose monitoring (CGM) in diabetes therapy. Journal of Laboratory Medicine, 44(2), 71-79.
12. Haghighatpanah, M., Nejad, A. S. M., Haghighatpanah, M., Thunga, G., & Mallayasamy, S. (2018). Factors that correlate with poor glycemic control in type 2 diabetes mellitus patients with complications. Osong public health and research perspectives, 9(4), 167.
13. Harada, Y., Harada, K., & Chin Jr, P. (2019). Comparing self monitoring blood glucose devices and laboratory tests: over 25 years experience. Cureus, 11(12).
14. Heinemann, L., Deiss, D., Siegmund, T., Schlüter, S., Naudorf, M., von Sengbusch, S., ... & Freckmann, G. (2019). Glucose measurement and control in patients with Type 1 or type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes, 127(S 01), S8-S26.
15. Herbert, M., Pendyal, S., Rairikar, M., Halaby, C., Benjamin, R. W., & Kishnani, P. S. (2018). Role of continuous glucose monitoring in the management of glycogen storage disorders. Journal of Inherited Metabolic Disease, 41, 917-927.
16. Jendrike, N., Baumstark, A., Pleus, S., Liebing, C., Kamecke, U., Haug, C., & Freckmann, G. (2019). Accuracy of five systems for self-monitoring of blood glucose in the hands of adult lay-users and professionals applying ISO 15197: 2013 accuracy criteria and potential insulin dosing errors. Current Medical Research and Opinion, 35(2), 301-311.
17. Klatman, E. L., Jenkins, A. J., Ahmedani, M. Y., & Ogle, G. D. (2019). Blood glucose meters and test strips: global market and challenges to access in low-resource settings. The lancet diabetes & Endocrinology, 7(2), 150-160.
18. Klonoff, D. C., Ahn, D., & Drincic, A. (2017). Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Research and Clinical Practice, 133, 178-192.
19. Leelarathna, L., & Wilmot, E. G. (2018). Flash forward: a review of flash glucose monitoring. Diabetic Medicine, 35(4), 472-482.
20. Longo, R., & Sperling, S. (2019). Personal versus professional continuous glucose monitoring: when to use which on whom. Diabetes Spectrum, 32(3), 183-193.
21. Marks, B. E., & Wolfsdorf, J. I. (2020). Monitoring of pediatric type 1 diabetes. Frontiers in Endocrinology, 11, 128.
22. Muhandiram, S., Suranimala, D. H., Weerasekara, N. D., & Ratnayake, C. (2018). Validity of over the counter finger stick glucose measurement devices in comparison with laboratory venous plasma glucose measurements on pregnant women with diabetes. Ceylon Medical Journal, 63(4), 180-185.
23. Nayeem, J., Kamaluddin, S. M., Chowdhury, H. A., & Ali, L. (2019). Technical accuracy of ten self-monitoring blood glucose devices commonly used in Dhaka City of Bangladesh. International Journal of Diabetes in Developing Countries, 39, 579-584.
24. Rajbhandari, B., Shrestha, T. M., & Aacharya, R. (2018). Comparison of Capillary and Venous Glucose in Diabetic Patient in a Peripheral Hospital. Nepal Medical Journal, 1(01), 1-4.
25. Reddy, N., Verma, N., & Dungan, K. (2020). Monitoring technologies-continuous glucose monitoring, mobile technology, biomarkers of glycemic control. Endotext [Internet].
26. Sato, T., Oshima, H., Nakata, K., Kimura, Y., Yano, T., Furuhashi, M., ... & Miura, T. (2019). Accuracy of flash glucose monitoring in insulin‐treated patients with type 2 diabetes. Journal of diabetes investigation, 10(3), 846-850.
27. Schrangl, P., Reiterer, F., Heinemann, L., Freckmann, G., & Del Re, L. (2018). Limits to the evaluation of the accuracy of continuous glucose monitoring systems by clinical trials. Biosensors, 8(2), 50.
28. Scott, E. M., Bilous, R. W., & Kautzky-Willer, A. (2018). Accuracy, user acceptability, and safety evaluation for the FreeStyle Libre flash glucose monitoring system when used by pregnant women with diabetes. Diabetes technology & therapeutics, 20(3), 180-188.
29. Selvan, C., Thukral, A., Dutta, D., Ghosh, S., & Chowdhury, S. (2017). Impact of self-monitoring of blood glucose log reliability on long-term glycemic outcomes in children with type 1 diabetes. Indian journal of endocrinology and metabolism, 21(3), 382.
30. Tauschmann, M., Forlenza, G., Hood, K., Cardona‐Hernandez, R., Giani, E., Hendrieckx, C., ... & DiMeglio, L. A. (2022). ISPAD Clinical Practice Consensus Guidelines 2022: diabetes technologies: glucose monitoring. Pediatric Diabetes, 23(8), 1390-1405.
31. Taylor, P. J., Thompson, C. H., Luscombe-Marsh, N. D., Wycherley, T. P., Wittert, G., & Brinkworth, G. D. (2019). Efficacy of real-time continuous glucose monitoring to improve effects of a prescriptive lifestyle intervention in type 2 diabetes: a pilot study. Diabetes Therapy, 10, 509-522.
32. Vettoretti, M. (2020). Modeling the SMBG measurement error. In Glucose Monitoring Devices (pp. 79-108). Academic Press.
33. Villena Gonzales, W., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors, 19(4), 800.
34. Wada, E., Onoue, T., Kobayashi, T., Handa, T., Hayase, A., Ito, M., ... & Arima, H. (2020). Flash glucose monitoring helps achieve better glycemic control than conventional self-monitoring of blood glucose in non-insulin-treated type 2 diabetes: a randomized controlled trial. BMJ Open Diabetes Research and Care, 8(1), e001115.
35. Wahl, H. G., & Koschinsky, T. (2018). Diabetes diagnostics including analytical methods for glucose monitoring. Point-of-Care Testing: Principles and Clinical Applications, 103-1