A SOUTH INDIAN CASE OF KOHLSCHUTTER-TONZ SYNDROME(KTS) WITH SPEECH ABNORMALITY

Main Article Content

Dr. Billa Vikas
Dr. Sravyasri Mukthavaram
Sunil Kumar Kasuvojvala
Venu Ettaveni

Keywords

Kohlscutter-tonz syndrome, ROGDI gene variants, Refractory epilepsy, Developmental regression, Targeted therapies

Abstract

Background: Kohlscutter-Tonz syndrome (KTS) is a rare autosomal recessive genetic disorder first described in 1974, characterized by seizures, intellectual disability, and abnormalities of teeth and other organs. It is caused by pathogenic variants in the ROGDI gene, with only 44 confirmed cases reported to date.


Objective: Investigate the genetic cause and natural history of an affected South Indian patient from a consanguineous family to inform the diagnosis and management of KTS.


Methods: Targeted gene sequencing of clinically relevant genes was performed using custom capture and Illumina sequencing. Sequencing reads were aligned to GRCh38, and variants called with GATK, then annotated using VariMAT, ClinVar, OMIM, and HGMD. Anti-seizure medications, therapies, and multidisciplinary management strategies used for 44 patients with Kohlscutter-Tonz syndrome were reviewed as a basis for tailored treatment.


Results: Targeted sequencing identified a novel homozygous ROGDI frameshift variant (p. Thr202AsnfsTer26) in the proband. Analysis of 44 published KTS patients found anti-seizure medications-controlled seizures in 10-50% of cases. The prognosis is usually poor due to refractory epilepsy, developmental regression, and early mortality.


Conclusion: This case adds to knowledge of the molecular basis and phenotype of KTS. Symptomatic treatment with anti-seizure medications provides limited efficacy, reflecting a lack of disease-modifying options. Further research on the ROGDI pathway may enable the development of targeted therapies to improve long-term outcomes.

Abstract 63 | PDF Downloads 23

References

1. Zech M, Lam DD, Francescatto L, Schormair B, Salpietro V, Schenck A, et al. Recessive mutations in the a3 helix of the leucine-zipper domain of ROGDI are associated with Kohlschutter-Tönz syndrome. Am J Hum Genet. 2015;96(5):771-8.
2. Kohlschutter A, Tonnz W. Epilepsy, oligophrenia, cerebellar ataxia and total alopecia. EurJ Pediatr. 1974;119(3):193-6.
3. Francescatto L, Stellmer F, Cozma C, Yang Y, Zech M, Decker E, et al. Molecular lessons learned from new loss-of-function mutations identified in known disease-causing genes in consanguineous families. Hum Mutat. 2020;41(2):198-211.
4. Zech M, Francescatto L, Schenck A, Lam DD, Schormair B, Salpietro V, et al. Recessive mutations in the a3 helix of the leucine zipper domain of ROGDI are associated with Kohlschütter-Tönz syndrome. Am J Hum Genet. 2015;96(5):771-8.
5. Sentieon software. https://sentieon.com
6. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25:1754-60.
7. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016 Jun 6;17(1):122.
8. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019 Jan 8;47(D1): D766-73.
9. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012 Nov 1;28(21):2747-54.
10. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018 Jan 4;46(D1): D1062-7.
11. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005 Jan 1;33(Database issue): D514-7.
12. Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD®): optimizing its use in the genomic era. Hum Genomics. 2020 Oct 5;14(1):38.
13. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011 May;32(5):557-63.
14. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009 Apr;84(4):524-33.
15. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020 Mar;581(7809):434-43.
16. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. 2016 Oct 6;99(4):877-85.
17. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015 Oct 1;526(7571):68-74.
18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. [published correction appears in Nature. 2021 Apr;592(7852): E15]. Nature. 2021 Jan;590(7844):300-5.
19.Teebi AS. Autosomal recessive disorder with anterior cerebellar hypoplasia and contractures. Am J Med Genet. 1992;44(3):311-316.
20. Tonz O, Kohl S, Hwang DY, et al. Claudin-16 and claudin-19 interaction is required for their apical localization in MDCK II cells. FASEB J. 2009;23(8):2442-2457.
21. Schinzel A. Amelogenesis imperfecta, nephrocalcinosis, and hypocalciuria occurring together in two sibs. Helv Paediatr Acta. 1979;34(1):51-60.
22. Lamartine J. Towards a new classification of amelogenesis imperfecta. Eur J Oral Sci. 2000;108(3):185-192.
23. Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1989;18(9):547-553
24. Pousette Lundgren G, Dahllof G. Outcome of restorative treatment in young patients with amelogenesis imperfecta. A cross-sectional, retrospective study. J Dent. 2014;42(11):1382-1389.
25. Sundell S, Koch G. Hereditary amelogenesis imperfecta. I. Epidemiology and clinical classification in a Swedish child population. Swed Dent J. 1985;9(4):157-169.
26. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007 Apr 17; 2:17.
27. Witkop CJ Jr, Sauk JJ Jr. Heritable defects of enamel. In: Stewart R, Prescott G, eds. Oral Facial Genetics. St Louis, MO: Mosby; 1976:151-226.
28. Winter GB, Brook AH. Enamel hypoplasia and anomalies of the enamel. Dent Clin North Am. 1975;19(1):3-24.
29. Sundell S. Hereditary amelogenesis imperfecta. An epidemiological, genetic and clinical study in a Swedish child population. Swed Dent J Suppl. 1986; 31:1-38.
30. Backman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in a northern Swedish county. Community Dent Oral Epidemiol. 1986;14(1):43-47.
31. Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1989;18(9):547-553.
32. Lamartine J. Towards a new classification of amelogenesis imperfecta. Eur J Oral Sci. 2000;108(3):185-192.
33. Aldred MJ, Savarirayan R, Crawford PJ. Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis. 2003;9(1):19-23.
34. Sundell S, Valentin J. Hereditary amelogenesis imperfecta. A genetic study. Swed Dent J Suppl. 1985; 29:177-194.
35. Witkop CJ Jr. Hereditary defects of dentin. Dent Clin North Am. 1975;19(1):25-45.
36. Nusier M, Yassin O, Hart TC, et al. Phenotypic diversity and revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(2):220-230.
37. Backman B. Amelogenesis imperfecta--clinical manifestations in 51 families in a northern Swedish county. Scand J Dent Res. 1988;96(6):505-516.
38. Paul, R. (2009). Studies on children with distinctive language disorders like SLI and their responses to early intervention interventions. Humanize the respective role of speech and language in Seminars in Speech and Language, 30(2), 101-110.
39 Schossig A, Wolf NI, Fischer C, Fischer M, Stocker G, Pabinger S. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome. Am J Hum Genet. 2012;90: 701–7. [PMC free article] [PubMed] [Google Scholar]
40 Mory A, Dagan E, Illi B, Duquesnoy P, Mordechai S, Shahor I. A nonsense mutation in the human homolog of Drosophila rogdi causes Kohlschütter-Tönz syndrome. Am J Hum Genet. 2012;90:708–14. [PMC free article] [PubMed] [Google Scholar]
41 Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).
42 Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).
43 Reimand, J. et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA Cytoscape EnrichmentMap. Nat. Protoc. 14, 482–517 (2019).
44 Kharouf, N. et al. Tannic acid speeds up the setting of mineral trioxide aggregate cements and improves its surface and bulk properties. J. Colloid Interface Sci. 589, 318 (2021).
45 Tucci A, Kara E, Schossig A, Wolf NI, Plagnol V, Fawcett K. Kohlschütter-Tönz syndrome: mutations in ROGDI and evidence of genetic heterogeneity. Hum Mutat. 2013;34:296–300. [PMC free article] [PubMed] [Google Scholar]