Main Article Content

Dr. Doni.R. Praveen Kumar
Mrs Archana Rajesh Meshram
Mr Rajendra Kumar Sahoo
Dr.Gaurav Soni
Dr Sukanta Bandyopadhyay


Pluripotent stem cells, Human embryology, Regenerative medicine, Cellular reprogramming, Disease modeling, Genome editing technologies


Human embryology holds immense promise for medical science, offering insights into the initial establishment of human growth and the potential for regenerative medicine. This paper delves into the captivating realm of self-renewing pluripotent stem cells, which lie at the heart of unlocking the mysteries of human embryology. Pluripotent stem cells hold the outstanding capacity to form into any cell type inside the body, presenting unprecedented opportunities for understanding development, modeling diseases, and facilitating therapeutic interventions. With recent advancements in cellular reprogramming techniques and genome editing technologies, researchers have made significant strides in connecting the potential of pluripotent stem cells for various bids. This paper aims to explore the journey of pluripotent stem cells, from their discovery to current state-of-the-art methodologies, while highlighting the challenges and ethical considerations inherent in their utilization. By elucidating the mechanisms governing pluripotency and differentiation, this research seeks to provide valuable insights into human embryology and pave the way for innovative approaches in regenerative medicine and disease modeling

Abstract 132 | PDF Downloads 15


1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.
2. Smith, A. G., et al. (2017). Pluripotent stem cells. Nature Reviews Molecular Cell Biology, 18(12), 727–728.
3. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.
4. Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 17(3), 183–193.
5. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.
6. Chen, S., et al. (2018). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343(6167), 193–196.
7. Shalem, O., et al. (2015). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166), 84–87.
8. Murphy, S. V., et al. (2020). Human embryonic stem cell-derived mesenchymal stromal cells. In Stem Cells in Regenerative Medicine (pp. 211–230). Springer, Cham.
9. Chen, G., Gulbranson, D. R., Hou, Z., Bolin, J. M., Ruotti, V., Probasco, M. D., ... & Thomson, J. A. (2019). Chemically defined conditions for human iPSC derivation and culture. Nature methods, 16(1), 1-11.
10. Shi, Y., Inoue, H., Wu, J. C., & Yamanaka, S. (2017). Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 16(2), 115-130.
11. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676.
12. Zhang, J., Zhao, X., Liang, L., Li, J., Demirci, U., & Wang, S. (2020). A decade of progress in liver regenerative medicine. Biomaterials, 236, 119779.
13. Park, I. H., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141-146.
14. Loh, Y. H., et al. (2010). Generation of induced pluripotent stem cells from human blood. Blood, 113(22), 5476-5479.
15. Vierbuchen, T., et al. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035-1041.
16. Efe, J. A., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13(3), 215-222.
17. Wang, Y., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 12(2), 252-264.
18. Huang, P., et al. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475(7356), 386-389.
19. Kim, K., et al. (2011). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285-290.
20. Son, E. Y., et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9(3), 205-218.
21. Benitex, Y., Davis, J., Wensel, D. L., Mitchell, T. S., Krystal, M. R., & Drexler, D. M. (2021). Utility of LC-MS Surrogate Peptide Methodology in the Development of a Combinectin, a Unique Anti-HIV Biologic Drug. Journal of Applied Bioanalysis, 7(3), e21007–e21007. https://doi.org/10.17145/jab.21.007
22. Shuroog Hassn, A. T., Ali Aqeel, A. M., Ohuod Khalied, Q., Nouf Ebrahim, A. S., & Soleman Ismaile, A. S. (2022). Revolutionizing Healthcare: The Technological Transformation of Medical Laboratory Outcomes. EPH - International Journal of Humanities and Social Science, 8(1), 1–8. https://doi.org/10.53555//eijbps.v8i1.41
23. Ezedom, T., Onyesom, I., Ejiro Awhin, P., Obogheneophruhe Elu, C., & Onyewonuwa Acha, J. (2023). Profiling of Phyllanthus amarus Phytochemical Constituents and Evaluation of Associated Antimalarial Activity and Antioxidant Potential in Experimental Mice. EPH - International Journal of Biological & Pharmaceutical Science, 9(1), 4–12. https://doi.org/10.53555/eijbps.v9i1.40
24. Rincon Pabon, J. P., & Meesters, R. J. (2022). Fit-for-Purpose Validation of a PK Assay applying Blood Collection by Volumetric Absorptive Microsampling. Journal of Applied Bioanalysis, 8, e22001–e22001. https://doi.org/10.17145/jab.22.001