Main Article Content

Avinash Mishra
Umesh Kumar
Satish Kumar Sharma


Hydroxyl chalcone, Ampicillin, Clotrimazole, Phthalimide, Antimicrobial, Antifungal


New series of 4-(2-(3-(substituted phenyl) acryloyl) phenoxy)-phenyl-2-(1,3-dio xoisoindolin-2-yl) acetamides, and N-(4-(substituted phenoxy) phenyl)-2-(1, 3-dioxoisoindolin -2-yl) acetamides were synthesized. Synthesis of these compound design in two scheme (A & B)The initial step of the reaction in scheme A, involve the reaction phthalic anhydride with and glycine yielded 2-(1, 3-dioxoisoindolin-2-yl) acetic acid, further chlorination of this product form yielded 2-(1, 3-dioxoisoindolin-2-yl) acetyl chloride. The second step involves the reaction para-bromoaniline and yield N-(4-bromophenyl)-2-(1, 3-dioxoisoindolin-2-yl) acetamide, the basic moiety was obtain by the reaction of hydroxyl chalcone i.e 4-(2-(3-(substituted phenyl) acryloyl) phenoxy)-phenyl-2-(1,3-dio xoisoindolin-2-yl) acetamides. Scheme B was design to substitute to bromide group on the 4th position in the respective compound with the phenol group and further change the R with H,4-CH3, 4-Cl, 2-Br, 3,4-Cl, 2-NO2, 4-Br, 4-NO2, 4-OCH3 and 2-Cl.  The confirmation of the newly synthsized compound by interpreting the essential analysis, spectral data, and alternative synthetic routes, Twenty of the synthesized compounds were screened for their antibacterial activity against S. aureus, and E. coli whereas AK1, BK1 and BK2 were  the potential compound in this study. They were showing the highest antibacterial activity against the two selected microorganisms. The antifungal activity of these compounds was also tested against C. albicans and A. niger . Compounds AK4, and BK5 exhibited the best antifungal activity against C. albicans and A. niger in all the synthesized compound in series A & B respectively.  The 4-(phenyl) acryloyl) phenoxy)-phenyl-2-(1,3-dio xoisoindolin-2-yl) acetamides synthesized compound could show the bacteriostatic property through binding to cell membrane, previous studies shows that phthalimide moiety have potential to interaction with cytochrome P450 enzyme’ of  the fungus due to the their aromatic character further impair ergosterol synthesis  of the fungal cell  membrane results abnormalities in the fungus cell. The comparative study few of the selected, newly synthesized compounds validated moderate to good antimicrobial and antifungal effect were also compared with the standard drug ampicillin and clotrimazole respectively.

Abstract 67 | pdf Downloads 31


Ahmad, I., Pawara, R. H., Girase, R. T., Pathan, A. Y., Jagatap, V. R., Desai, N., et al. (2022, June). Synthesis, Molecular Modeling Study, and Quantum-Chemical-Based Investigations of Isoindoline-1,3-diones as Antimycobacterial Agents. ACS Omega, 7, 21820–21844.
[2]. Ahmed, H. E., Abdel-Salam, H. A., & Shaker, M. A. (2016, June). Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives. Bioorganic Chemistry, 66, 1–11.
[3]. Aman, H., Huang, Y.-C., Liu, Y.-H., Tsai, Y.-L., Kim, M., Hsieh, J.-C., et al. (2021, November). Cobalt-Catalyzed Cyclization of 2-Bromobenzamides with Carbodiimides: A New Route for the Synthesis of 3-(Imino)isoindolin-1-ones. Molecules, 26, 7212.
[4]. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016, April). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71–79.
[5]. Campos-Rodríguez, C., Trujillo-Ferrara, J. G., Alvarez-Guerra, A., Vargas, I. M., Cuevas-Hernández, R. I., Andrade-Jorge, E., et al. (2019, January). Neuropharmacological Screening of Chiral and Non-chiral Phthalimide- Containing Compounds in Mice: in vivo and in silico Experiments. Medicinal Chemistry, 15, 102–118.
[6]. Grauso, L., Teta, R., Esposito, G., Menna, M., & Mangoni, A. (2019). Computational prediction of chiroptical properties in structure elucidation of natural products. Natural Product Reports, 36, 1005–1030.
[7]. Hassanzadeh, F., Hassanzadeh, M., khodarahmi, G., Rostami, M., Azimi, F., Nadri, H., et al. (2021). Design, synthesis, and bio-evaluation of new isoindoline-1,3-dione derivatives as possible inhibitors of acetylcholinesterase. Research in Pharmaceutical Sciences, 16, 482.
[8]. Kolukisaoglu, Ü., Wendler, C., Goerdes, D., Diener, A., & Thurow, K. (2010, June). Inhibitory effects of phthalimide derivatives on the activity of the hepatic cytochrome P450 monooxygenases CYP2C9 and CYP2C19. Journal of Enzyme Inhibition and Medicinal Chemistry, 25, 876–886.
[9]. Ma, L., Yang, Z., Li, C., Zhu, Z., Shen, X., & Hu, L. (2011, January). Design, synthesis and SAR study of hydroxychalcone inhibitors of human β-secretase (BACE1). Journal of Enzyme Inhibition and Medicinal Chemistry, 26, 643–648.
[10]. Mohammadi-Farani, A., Abdi, N., Moradi, A., & Aliabadi, A. (2017). 2-(2-(4-Benzoylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents. Iranian Journal of Basic Medical Sciences, 20.
[11]. Morrison, L., & Zembower, T. R. (2020, October). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30, 619–635.
[12]. Rauf, A., Shah, A., Abbas, S., Rana, U. A., Khan, S. U.-D., Ali, S., et al. (2015, March). Synthesis, spectroscopic characterization and pH dependent photometric and electrochemical fate of Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 58–66.
[13]. Sang, Z., Wang, K., Wang, H., Yu, L., Wang, H., Ma, Q., et al. (2017, November). Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 27, 5053–5059.
[14]. Shin, J., Kim, J.-E., Lee, Y.-W., & Son, H. (2018, March). Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins, 10, 112.
[15]. Su, M., Cao, J., Huang, J., Liu, S., Im, D., Yoo, J.-W., et al. (2017, January). The In Vitro and In Vivo Anti-Inflammatory Effects of a Phthalimide PPAR-γ Agonist. Marine Drugs, 15, 7.
[16]. Wang, H., Yuan, H., Li, S., Li, Z., & Jiang, M. (2016, February). Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids. Bioorganic & Medicinal Chemistry Letters, 26, 809–813.
[17]. Zhang, X., Guo, J., Cheng, F., & Li, S. (2021). Cytochrome P450 enzymes in fungal natural product biosynthesis. Natural Product Reports, 38, 1072–1099.
[18]. Abdel-Aziz, A. A.-M., El-Azab, A. S., Abu El-Enin, M. A., Almehizia, A. A., Supuran, C. T., & Nocentini, A. (2018, October). Synthesis of novel isoindoline-1,3-dione-based oximes and benzenesulfonamide hydrazones as selective inhibitors of the tumor-associated carbonic anhydrase IX. Bioorganic chemistry, 80, 706-713.
[19]. Afrakssou, Z., Rodi, Y. K., Capet, F., Essassi, E. M., & Ng, S. W. (2011, August). 1,3-Bis[3-(1,3-dioxoisoindolin-2-yl)prop-yl]-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione. Acta crystallographica. Section E, Structure reports online, 67(Pt 8), o2137.
[20]. Ahmad, I., Pawara, R. H., Girase, R. T., Pathan, A. Y., Jagatap, V. R., Desai, N., et al. (2022, June). Synthesis, Molecular Modeling Study, and Quantum-Chemical-Based Investigations of Isoindoline-1,3-diones as Antimycobacterial Agents. ACS omega, 7(25), 21820-21844.
[21]. Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M., & Büyükgüngör, O. (2008, April). 2-[1-(4-Ethoxy-phen-yl)-2-oxo-4-styryl-azetidin-3-yl]isoindoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 64(Pt 5), o924.
[22]. Alanazi, M. M., Almehizia, A. A., Bakheit, A. H., Alsaif, N. A., Alkahtani, H. M., & Wani, T. A. (2019, March). Mechanistic interaction study of 5,6-Dichloro-2-[2-(pyridin-2-yl)ethyl]isoindoline-1,3-dione with bovine serum albumin by spectroscopic and molecular docking approaches. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 27(3), 341-347.
[23]. Al-Ghorbani, M., Alharbi, O., Al-Odayni, A.-B., & Abduh, N. A. (2023, August). Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes. Pharmaceuticals (Basel, Switzerland), 16(9).
[24]. Aliabadi, A., Foroumadi, A., Mohammadi-Farani, A., & Garmsiri Mahvar, M. (2013, October). Synthesis and Evaluation of Anti-acetylcholinesterase Activity of 2-(2-(4-(2-Oxo-2-phenylethyl)piperazin-1-yl) ethyl)Isoindoline-1,3-dione Derivatives with Potential Anti-Alzheimer Effects. Iranian journal of basic medical sciences, 16(10), 1049-54.
[25]. Almeida, M. L., Oliveira, M. C., Pitta, I. R., & Pitta, M. G. (2020). Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. Current organic synthesis, 17(4), 252-270.
[26]. Andrade-Jorge, E., Bribiesca-Carlos, J., Martínez-Martínez, F. J., Soriano-Ursúa, M. A., Padilla-Martínez, I. I., & Trujillo-Ferrara, J. G. (2018, June). Crystal structure, DFT calculations and evaluation of 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione as AChE inhibitor. Chemistry Central journal, 12(1), 74.
[27]. Asad, M., Oo, C.-W., Osman, H., Hemamalini, M., & Fun, H.-K. (2011, July). 2-[(E)-(2,4-Dichloro-benzyl-idene)amino]-isoindoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 67(Pt 7), o1712.
[28]. Azimi, S., Zonouzi, A., Firuzi, O., Iraji, A., Saeedi, M., Mahdavi, M., et al. (2017, September). Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. European journal of medicinal chemistry, 138, 729-737.
[29]. Bai, L.-G., Chen, M.-T., Xiao, D.-R., Zhao, L.-B., & Luo, Q.-L. (2018, August). Access to Multisubstituted Furan-3-carbothioates via Cascade Annulation of α-Oxo Ketene Dithioacetals with Isoindoline-1,3-dione-Derived Propargyl Alcohols. The Journal of organic chemistry, 83(15), 7648-7658.
[30]. Bao, Y., Xing, M., Matthew, N., Chen, X., Wang, X., & Lu, X. (2023, June). Macrocyclizing DNA-Linked Peptides via Three-Component Cyclization and Photoinduced Chemistry. Organic letters.
[31]. Bartholomä, M. D., Ouellette, W., & Zubieta, J. (2009, January). 2-(3-[(2R,4S,5R)-4-Hydr-oxy-5-hydroxy-methyl-2,3,4,5-tetra-hydro-furan-2-yl]-5-methyl-2,6-dioxo-1,2,3,6-tetra-hydro-pyrimidin-1-ylmeth-yl)isoindoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 65(Pt 2), o432-3.
[32]. Benramdane, S., De Loose, J., Beyens, O., Van Rymenant, Y., Vliegen, G., Augustyns, K., et al. (2022, August). Vildagliptin-Derived Dipeptidyl Peptidase 9 (DPP9) Inhibitors: Identification of a DPP8/9-Specific Lead. ChemMedChem, 17(15), e202200097.
[33]. Bhatti, M. H., Yunus, U., Saeed, S., Shah, S. R., & Wong, W.-T. (2011, August). catena-Poly[[diaqua-calcium]bis-[μ-2-(1,3-dioxoisoindolin-2-yl)acetato]-κO,O':O;κO:O,O']. Acta crystallographica. Section E, Structure reports online, 67(Pt 8), m1102-3.
[34]. Bielawski, K., Leszczyńska, K., Kałuża, Z., Bielawska, A., Michalak, O., Daniluk, T., et al. (2017). Synthesis and antimicrobial activity of chiral quaternary N-spiro ammonium bromides with 3',4'-dihydro-1'H-spiro[isoindoline-2,2'-isoquinoline] skeleton. Drug design, development and therapy, 11, 2015-2028.
[35]. Boobalan, M. s., Amaladasan, M., Ramalingam, S., Tamilvendan, D., Venkatesa Prabhu, G., & Bououdina, M. (2015, February). First principles and DFT supported investigations on vibrational spectra and electronic structure of 2-((phenylamino)methyl)isoindoline-1,3-dione–an antioxidant active Mannich base. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 137, 962-78.
[36]. Braun, T. S., Widder, P., Osswald, U., Groß, L., Williams, L., Schmidt, M., et al. (2020, April). Isoindoline-Based Nitroxides as Bioresistant Spin Labels for Protein Labeling through Cysteines and Alkyne-Bearing Noncanonical Amino Acids. Chembiochem : a European journal of chemical biology, 21(7), 958-962.
[37]. Brześkiewicz, J., & Loska, R. (2023, February). Synthesis of Isoindole N-Oxides by Palladium-Catalyzed C-H Functionalization of Aldonitrones. The Journal of organic chemistry, 88(4), 2385-2392.
[38]. Bum-Erdene, K., Yeh, I.-J., Gonzalez-Gutierrez, G., Ghozayel, M. K., Pollok, K., & Meroueh, S. O. (2023, January). Small-Molecule Cyanamide Pan-TEAD·YAP1 Covalent Antagonists. Journal of medicinal chemistry, 66(1), 266-284.
[39]. Buongiorno, D., & Straganz, G. D. (2013, January). Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers., 257(2), 541-563. Switzerland.
[40]. Büyükgüngör, O., & Odabaşoğlu, M. (2008, April). 5,6-Dichloro-2-(2-fluoro-phen-yl)iso-indoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 64(Pt 5), o882.
[41]. Büyükgüngör, O., & Odabaşoğlu, M. (2008, April). 5,6-Dichloro-2-(3-methoxy-phen-yl)isoindoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 64(Pt 5), o881.
[42]. Cheng, K. T., & Katsifis, A. (2004). 2-(2-(4-(4-[(123)I]Iodobenzyl)piperazin-1-yl)-2-oxoethyl)isoindoline-1,3-dione.2-(2-(4-(4-[(123)I]Iodobenzyl)piperazin-1-yl)-2-oxoethyl)isoindoline-1,3-dione. Bethesda (MD).
[43]. Cheng, P.-F., Wang, C.-J., & Wang, Y.-X. (2009, October). 2-(3-Bromo-prop-yl)isoindoline-1,3-dione. Acta crystallographica. Section E, Structure reports online, 65(Pt 11), o2646.
[44]. Chia, T. S., Kwong, H. C., Sim, A. J., Ng, W. Z., Wong, Q. A., Chidan Kumar, C. S., et al. (2019, January). Conformational dimorphism of 2,2'-methyl-enebis(isoindoline-1,3-dione). Acta crystallographica. Section E, Crystallographic communications, 75(Pt 1), 49-52.
[45]. Chiba, S., Nishiyama, T., & Yamada, Y. (2009, March). The antinociceptive effects and pharmacological properties of JM-1232(-): a novel isoindoline derivative. Anesthesia and analgesia, 108(3), 1008-14.
[46]. Zhang, Zuo-Peng / Zhong, Ye / Han, Zhen-Bin / Zhou, Lin / Su, Hua-Sheng / Wang, Jian / Liu, Yang / Cheng, Mao-Sheng Synthesis, Molecular Docking Analysis and Biological Evaluations of Saccharide-Modified Thiadiazole Sulfonamide Derivatives 2021-05 International Journal of Molecular Sciences , Vol. 22, No. 11