MOLECULAR CHARACTERIZATION OF GRASSHOPPER SPECIES FROM TEHSIL OGHI

Main Article Content

Rehana Shaheen
Zeeshan Abbas
Muhammad Nabeel
Dr.Razia Virk
Fatima Habib
Sarmad Ali shah
Eaman Naveed

Keywords

Abstract

Grasshopper belongs to the order Orthoptera, under the class Insecta. Grasshoppers are pests of vegetation and crops. The research was conducted on the molecular study and phylogenetic relationship of collected species of Grasshoppers, within families Tettigoniidae, Acrididae, and Dericorythidae, collected from tehsil, oghi. A total of 70 samples was collected and morphological identification was done using an Orthopteran Taxonomic key. The taxonomic analysis revealed 9 species, under 8 genera, and spreading into 3 families. The 9 identified species revealed i-e Melanoplus bivittatus, Anacridium aegyptium, hieroglyphs Banian, Kosciuscola tristis tristis, stenobothrus stigmatics, under the family Acrididae. Two species i-e Omocestus viridulus and Conocephalus fuscus belong to the family Tettigoniidae. While the two species i-e Dericorys albidula, Dericorys tibialis resulted under the family Dericorythidae. DNA was isolated from Grasshoppers' legs using the Gervay protocol. The amplification of 16 Sr RNA was performed through polymerase chain reaction (PCR). Amplified 16 Sr RNA gene was set for sequencing. After successful sequencing,   samples were further identified by BLAST in the Gene Bank, NCBI. The molecular study was performed with various parameters i-e Genetic distances, Molecular Clock, and Phylogenetic relationship. The genetic distance was estimated to be 0.168-0.187. The value of the molecular clock revealed 0.168. The phylogenetic tree was based on the Neighbor-Joining tree, the tree length was revealed 0.00 to 0.021. The evolutionary relationship among collected species and these species retrieved from GeneBank were clustered together and their similarities were recorded. The estimated phylogenetic tree of the species was also clustered based on the Neighbor-Joining tree. The samples collected and processed contain no novel species; all of the species are pre identified but first time recorded from tehsil oghi.

Abstract 181 | PDF Downloads 95

References

1. Bazelet, C. S., & Samways, M. J. (2014). Habitat quality of grassland fragments affects dispersal ability of a mobile grasshopper, Ornithacris cyanea (Orthoptera: Acrididae). African Entomology, 22(4), 714-725. https://hdl.handle.net/10520/EJC163604
2. Barrett, R. D., & Hebert, P. D. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83(3), 481-491. https://doi.org/10.1139/z05-024
3. Boyan, G. S., Williams, J. L. D., & Herbert, Z. (2008). Fascicle switching generates a chiasmal neuroarchitecture in the embryonic central body of the grasshopper Schistocerca gregaria. Arthropod structure & development, 37(6), 539-544. https://doi.org/10.1016/j.asd. 2008.07.005
4. Bughio, B. A., Sultana, R., Wagan, M. S., Ullah, F., & Rafi, M. A. (2013). Studies on the tribe Acrotylini (Acrididae: Orthoptera) from Pakistan. Int. J. Biol, 3, 180-191. http://dx.doi.org/10.12692/ijb/3.4.180-191
5. Chen, Y. Z., Deng, W. A., Wang, J. M., Lin, L. L., & Zhou, S. Y. (2018). Phylogenetic relationships of Scelimeninae genera (Orthoptera: Tetrigoidea) based on COI, 16S rRNA and 18S rRNA gene sequences. Zootaxa, 4482(2), 392-400. http://zoobank.org/urn:lsid:zoobank. org:pub:799E8FBF-3EDD-4070-B78C-C9E8CAEB2E38
6. Chintauan-Marquier, I. C., Amédégnato, C., Nichols, R. A., Pompanon, F., Grandcolas, P., & Desutter-Grandcolas, L. (2014). Inside the Melanoplinae: New molecular evidence for the evolutionary history of the Eurasian Podismini (Orthoptera: Acrididae). Molecular phylogenetics and evolution, 71, 224-233.https://doi.org/10.1016/j.ympev.2013.09.009.
7. Cigliano, M. M., De Wysiecki, M. L., & Lange, C. E. (2000). Grasshopper (Orthoptera: Acridoidea) species diversity in the Pampas, Argentina. Diversity and distributions, 6(2), 81-91. https://doi.org/10.1046/j.1472-4642.2000.00077.x
8. Coghlan, M. L., Haile, J., Houston, J., Murray, D. C., White, N. E., Moolhuijzen, P., ... & Bunce, M. (2012). Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS genetics, 8(4), e1002657. https://doi.org/10.1371/journal.pgen.1002657
9. Dowle, E. J., Morgan-Richards, M., & Trewick, S. A. (2014). Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14(1), 1-15. http://www.biomedcentral.com/1471-2148/14/216
10. Gandar, M. V. (1982). The dynamics and trophic ecology of grasshoppers (Acridoidea) in a South African savanna. Trophic ecology of grasshoppers in South African savanna. Oecologia, 370-378. https://www.jstor.org/stable/4216777
11. Hajibabaei, M., Singer, G. A., Hebert, P. D., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. TRENDS in Genetics, 23(4), 167-172. https://doi.org/10.1016/j.tig.2007.02.001
12. Hassan, S. A., Bigler, F., Bogenschütz, H., Boller, E., Brun, J., Calis, J. N. M., ... & Vogt, H. (1994). Results of the sixth joint pesticide testing programme of the IOBC/WPRS-working group «pesticides and beneficial organisms». Entomophaga, 39, 107-119.
13. Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1), S96-S99. https://doi.org/10.1098/rsbl.2003.0025
14. Hemp, C., Scherer, C., Brandl, R., & Pinkert, S. (2020). The origin of the endemic African grasshopper family Lentulidae (Orthoptera: Acridoidea) and its climate‐induced diversifica tion. Journal of Biogeography, 47(8), 1805-1815. https://doi.org/10.1111/jbi.13880
15. Hochkirch, A. (2001). A Phylogenetic Analysis of the East African Grasshopper Genus Afrophlaeoba Jago, 1983:(Orthoptera: Acridoidea: Acridinae). Cuvillier.
16. Hotz, G., & Reuschl, H. (1967). Damage to deoxyribose molecules and to U-gene reactivation in UV-irradiated 5-bromouracil-DNA of phage T4 Bo ras influenced by cysteamine. Molecular and General Genetics MGG, 99(1), 5-11.
17. Hotz, G., & Reuschl, H. (1967). Damage to deoxyribose molecules and to U-gene reactivation in UV-irradiated 5-bromouracil-DNA of phage T4 Bo ras influenced by cysteamine. Molecular and General Genetics MGG, 99(1), 5-11.
18. Janzen, D. H., Hajibabaei, M., Burns, J. M., Hallwachs, W., Remigio, E., & Hebert, P. D. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1835-1845. https://doi.org/10.1098/rstb.2005.1715
19. Jarman, & Elliott. (2000). DNA evidence for morphological and cryptic Cenozoic speciations in the Anaspididae,‘living fossils’ from the Triassic. Journal of Evolutionary Biology, 13(4), 624-633. https://doi.org/10.1046/j.1420-9101.2000.00207.x
20. Joern, A. (1979). Resource utilization and community structure in assemblages of arid grassland grasshoppers (Orthoptera: Acrididae). Transactions of the American Entomological Society, 253-300. https://www.jstor.org/stable/25078241
21. Kandul, N. P., Lukhtanov, V. A., Dantchenko, A. V., Coleman, J. W., Sekercioglu, C. H., Haig, D., & Pierce, N. E. (2004). Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-α: karyotype diversification and species radiation. Systematic Biology, 278-298. https://www.jstor.org/stable/4135412
22. Ketmaier, V., Stuckas, H., Hempel, J., Landeck, I., Tobler, M., Plath, M., & Tiedemann, R. (2010). Genetic and morphological divergence among Gravel Bank Grasshoppers, Chorthippus pullus (Acrididae), from contrasting environments. Organisms diversity & evolution, 10, 381-395. 10.1007/s13127-010-0031-1
23. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, 102(23), 8369-8374. https://doi.org/10.1073/pnas.0503123102
24. Lanes, G. O., Kawada, R., Azevedo, C. O., & Brothers, D. J. (2020). Revisited morphology applied for systematics of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4752(1), 1-127.
25. P McClenaghan, B., Gibson, J. F., Shokralla, S., & Hajibabaei, M. (2015). Discrimination of grasshopper (O rthoptera: A crididae) diet and niche overlap using next‐generation sequencing of gut contents. Ecology and evolution, 5(15), 3046-3055.atwardhan, A., Ray, S. and Roy, A. 2014. Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology, 2014. https://doi.org/10.1002/ece3.1585
26. Pocco, M. E., & Cigliano, M. M. (2020). The grasshoppers (Orthoptera, Acridomorpha) from the Mitaraka Mountain Range, French Guiana. Zoosystema, 42(7), 105-114. https://doi.org/10.5252/zoosystema2020v42a7
27. Popova, K. V., Baturina, N. S., Molodtsov, V. V., Yefremova, O. V., Zharkov, V. D., & Sergeev, M. G. (2021, July). The handsome cross grasshopper Oedaleus decorus (Germ.)(Orthoptera: Acrididae) as a newly emerging pest in the south-eastern part of West Siberian Plain. In Proceedings of the 1st International Electronic Conference on Entomology, online (pp. 1-15). https://iece.sciforum.net/
28. Saitou, N., & Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree.
29. Saunders, G. W. (2005). Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical transactions of the Royal Society B: Biological sciences, 360(1462), 1879-1888. https://doi.org/10.1098/rstb.2005.1719
30. Scicluna, S. M., Tawari, B., & Clark, C. G. (2006). DNA barcoding of Blastocystis. Protist, 157(1), 77-85. https://doi.org/10.1016/j.protis.2005.12.001
31. Scotland, R. W., Olmstead, R. G., & Bennett, J. R. (2003). Phylogeny reconstruction: the role of morphology. Systematic biology, 52(4), 539-548. https://www.jstor.org/stable/3651141.
32. Sergeev, M. G. (2021). Distribution patterns of grasshoppers and their kin over the Eurasian Steppes. Insects, 12(1), 77. https://doi.org/10.3390/insects12010077
33. Song, H., Mariño-Pérez, R., Woller, D. A., & Cigliano, M. M. (2018). Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity, 2(4), 3.https://doi.org/10.1093/isd/ixy008
34. Sonnenfeld, N., Schappert, S. M., & Lin, S. X. (2009). Racial and ethnic differences in delivery of tobacco-cessation services. American journal of preventive medicine, 36(1), 21-28. https://doi.org/10.1016/j.amepre.2008.09.028
35. Sultana, R., Wagan, Y. S., & Wagan, M. S. (2013). Orthopteran biodiversity of Thar desert, sindh, Pakistan. Pakistan Journal of Zoology, 45(2). http://www.zsp.com.pk/pdf45/299-304%2..
36. Summerbell, R. C., Lévesque, C. A., Seifert, K. A., Bovers, M., Fell, J. W., Diaz, M. R., ... & Crous, P. W. (2005). Microcoding: the second step in DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1897-1903. https://doi.org/10.1098/rstb.2005.1721
37. Sundararaj, V., & Selvi, M. (2021). Opposition grasshopper optimizer based multimedia data distribution using user evaluation strategy. Multimedia Tools and Applications, 80, 29875-29891. https://doi.org/10.1007/s11042-021-11123-4
38. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
39. Van Heesch, S., Mokry, M., Boskova, V., Junker, W., Mehon, R., Toonen, P., ... & Guryev, V. (2013). Systematic biases in DNA copy number originate from isolation procedures. Genome biology, 14(4), 1-9 http://genomebiology.com/2013/14/4/R33.
40. Vickery, V. R., & Kevan, D. K. M. (1983). A monograph of the orthopteroid insects of Canada and adjacent regions. Vols. I and II. A monograph of the orthopteroid insects of Canada and adjacent regions. Vols. I and II., (13).
41. Wilson, K. H. (1995). Molecular biology as a tool for taxonomy. Clinical infectious diseases, 20(Supplement_2),S117-S121. https://doi.org/10.1093/clinids/20.Supplement_2.S117
42. Wilson, M. R., DiZinno, J. A., Polanskey, D., Replogle, J., & Budowle, B. (1995). Validation of mitochondrial DNA sequencing for forensic casework analysis. International journal of legal medicine, 108, 68-74.
43. Xiao, J.-H., Wang, N.-X., LI, Y.-W., Murphy, R. W., Wan, D.-G., Niu, L.-M., Hu, H.-Y., Fu, Y.-G., and Huang, D.-W. 2010. Molecular approaches to identify cryptic species and polymorphic species within a complex community of fig wasps. PLoS One, 5, e15067.
44. Zemlak, T. S., Ward, R. D., Connell, A. D., Holmes, B. H., & Hebert, P. D. (2009). DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources, 9, 237-242. https://doi.org/10.1111/j.1755-0998.2009.02649.x