Main Article Content

Muhammad Adnan Hasnain
Muhammad Ashad Baloch
Aqsa Jameel
Zaid Sarfraz
Abdul Majid Soomro
Imran Khurshid


Deep Learning, Dental Disease, Tooth Decay, Disease Detection, Computer Vision


Dental problems now affect a sizable section of the population and are a common global health problem. It is essential to get an early and precise diagnosis of dental disorders in order to treat them effectively and avoid subsequent consequences. Deep learning algorithms have recently demonstrated astounding effectiveness in a variety of health imaging claims. Through the use of dental radiographs, this study intends to investigate the potential of deep learning for the classification of dental illnesses.

A dataset with a variety of dental radiographs was gathered, including both healthy teeth and those with effected dental. Utilising dental radiographs as a source, convolutional neural networks (CNNs) were used to extract distinguishing features. To assess how well different CNN architectures performed in classifying dental diseases, popular models like VGGNet19, ResNet50, and DenseNet169 were used.

The outcomes showed that deep learning models were effective at classifying dental diseases. The top-performing model outperformed on conventional machine learning methods and had a classification accuracy of over 99.90%. The models were effective at distinguishing between various dental disorders, such as Healthy and effected teeth. The models also demonstrated good specificity and sensitivity, recall, precision, f1score and training testing accuracy highlighting their potential as trustworthy diagnostic tools.

Abstract 376 | PDF Downloads 119


1. Higuchi, Y., & Takashima, H. (2023). Clinical genetics of Charcot–Marie–Tooth disease. Journal of Human Genetics, 68(3), 199-214.
2. Butera, A., Folini, E., Cosola, S., Russo, G., Scribante, A., Gallo, S., ... & Genovesi, A. (2023). Evaluation of the Efficacy of Probiotics Domiciliary Protocols for the Management of Periodontal Disease, in Adjunction of Non-Surgical Periodontal Therapy (NSPT): A Systematic Literature Review. Applied Sciences, 13(1), 663.
3. Ma, M., Li, Y., Dai, S., Chu, M., Sun, L., Liu, L., & Zhou, J. C. (2023). A meta-analysis on the prevalence of Charcot–Marie–Tooth disease and related inherited peripheral neuropathies. Journal of Neurology, 270(5), 2468-2482.
4. Hajishengallis, G. (2022). Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontology 2000, 89(1), 9-18.
5. Khanagar, S. B., Alfouzan, K., Awawdeh, M., Alkadi, L., Albalawi, F., & Alfadley, A. (2022). Application and performance of artificial intelligence technology in detection, diagnosis and prediction of dental caries (DC)—A systematic review. Diagnostics, 12(5), 1083.
6. Almalki, Y. E., Din, A. I., Ramzan, M., Irfan, M., Aamir, K. M., Almalki, A., ... & Rahman, S. (2022). Deep Learning Models for Classification of Dental Diseases Using Orthopantomography X-ray OPG Images. Sensors, 22(19), 7370.
7. AL-Ghamdi, A. S., Ragab, M., AlGhamdi, S. A., Asseri, A. H., Mansour, R. F., & Koundal, D. (2022). Detection of dental diseases through X-ray images using neural search architecture network. Computational Intelligence and Neuroscience, 2022.
8. Rimi, I. F., Arif, M. A. I., Akter, S., Rahman, M. R., Islam, A. S., & Habib, M. T. (2022). Machine learning techniques for dental disease prediction. Iran Journal of Computer Science, 5(3), 187-195.
9. Salunke, D., Joshi, R., Peddi, P., & Mane, D. T. (2022, November). Deep Learning Techniques for Dental Image Diagnostics: A Survey. In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 244-257). IEEE.
10. Imak, A., Celebi, A., Siddique, K., Turkoglu, M., Sengur, A., & Salam, I. (2022). Dental caries detection using score-based multi-input deep convolutional neural network. IEEE Access, 10, 18320-18329.
11. Ali, R. B., Ejbali, R., & Zaied, M. (2016, August). Detection and classification of dental caries in x-ray images using deep neural networks. In International conference on software engineering advances (ICSEA) (p. 236).
12. Singh, P., & Sehgal, P. (2021). GV Black dental caries classification and preparation technique using optimal CNN-LSTM classifier. Multimedia Tools and Applications, 80, 5255-5272.
13. Chitnis, G., Bhanushali, V., Ranade, A., Khadase, T., Pelagade, V., & Chavan, J. (2020, October). A review of machine learning methodologies for dental disease detection. In 2020 IEEE India Council International Subsections Conference (INDISCON) (pp. 63-65). IEEE.
14. Hwang, J. J., Jung, Y. H., Cho, B. H., & Heo, M. S. (2019). An overview of deep learning in the field of dentistry. Imaging science in dentistry, 49(1), 1-7.
15. Ali, R. B., Ejbali, R., & Zaied, M. (2016, August). Detection and classification of dental caries in x-ray images using deep neural networks. In International conference on software engineering advances (ICSEA) (p. 236).
16. Prajapati, S. A., Nagaraj, R., & Mitra, S. (2017, August). Classification of dental diseases using CNN and transfer learning. In 2017 5th International Symposium on Computational and Business Intelligence (ISCBI) (pp. 70-74). IEEE.
17. Li, G. H., Hsung, T. C., Ling, W. K., Lam, W. Y. H., Pelekos, G., & McGrath, C. (2021, April). Automatic site-specific multiple level gum disease detection based on deep neural network. In 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT) (pp. 201-205). IEEE.
18. Endres, M. G., Hillen, F., Salloumis, M., Sedaghat, A. R., Niehues, S. M., Quatela, O., ... & Gaudin, R. A. (2020). Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics, 10(6), 430.
19. Chen, H., Li, H., Zhao, Y., Zhao, J., & Wang, Y. (2021). Dental disease detection on periapical radiographs based on deep convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery, 16, 649-661.
20. Patel, J. S., Su, C., Tellez, M., Albandar, J. M., Rao, R., Iyer, V., ... & Wu, H. (2022). Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data. Frontiers in Artificial Intelligence, 5, 979525.
21. Aberin, S. T. A., & de Goma, J. C. (2018, November). Detecting periodontal disease using convolutional neural networks. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-6). IEEE.
22. Singh, N. K., & Raza, K. (2022). Progress in deep learning-based dental and maxillofacial image analysis: A systematic review. Expert Systems with Applications, 199, 116968.
23. Imak, A., Celebi, A., Siddique, K., Turkoglu, M., Sengur, A., & Salam, I. (2022). Dental caries detection using score-based multi-input deep convolutional neural network. IEEE Access, 10, 18320-18329.
24. Patil, S., Albogami, S., Hosmani, J., Mujoo, S., Kamil, M. A., Mansour, M. A., ... & Ahmed, S. S. (2022). Artificial intelligence in the diagnosis of oral diseases: applications and pitfalls. Diagnostics, 12(5), 1029.
25. Mohammad‐Rahimi, H., Motamedian, S. R., Pirayesh, Z., Haiat, A., Zahedrozegar, S., Mahmoudinia, E., ... & Schwendicke, F. (2022). Deep learning in periodontology and oral implantology: A scoping review. Journal of periodontal research, 57(5), 942-951.
26. Revilla-León, M., Gómez-Polo, M., Barmak, A. B., Inam, W., Kan, J. Y., Kois, J. C., & Akal, O. (2022). Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. The Journal of Prosthetic Dentistry.
27. Mohammad-Rahimi, H., Rokhshad, R., Bencharit, S., Krois, J., & Schwendicke, F. (2023). Deep learning: a primer for dentists and dental researchers. Journal of Dentistry, 104430.
28. Kang, I. A., Ngnamsie Njimbouom, S., Lee, K. O., & Kim, J. D. (2022). DCP: prediction of dental caries using machine learning in personalized medicine. Applied Sciences, 12(6), 3043.
29. Zhu, H., Cao, Z., Lian, L., Ye, G., Gao, H., & Wu, J. (2022). CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Computing and Applications, 1-9.
30. Fatima, A., Shafi, I., Afzal, H., Díez, I. D. L. T., Lourdes, D. R. S. M., Breñosa, J., ... & Ashraf, I. (2022, October). Advancements in dentistry with artificial intelligence: current clinical applications and future perspectives. In Healthcare (Vol. 10, No. 11, p. 2188). MDPI.
31. Mohammad-Rahimi, H., Motamedian, S. R., Rohban, M. H., Krois, J., Uribe, S. E., Mahmoudinia, E., ... & Schwendicke, F. (2022). Deep learning for caries detection: A systematic review. Journal of Dentistry, 122, 104115.

Most read articles by the same author(s)