Main Article Content

Vivek Chintada
A Govardhan Naik
Singamala Hari Prasad
Cherukuri Samson Raju
Shanmugam Bhasha


Animal production, Livestock Farming, Resource management, Innovative strategies


This comprehensive review focuses on the urgent need for innovative strategies in sustainable animal production that not only consider environmental impact but also ensure long-term resilience. The challenges and opportunities in achieving sustainability are explored, emphasizing the crucial role of technology and innovation. Specific attention is given to precision livestock farming, discussing advancements and applications that optimize animal welfare and resource management. Additionally, alternative feed sources are evaluated as novel approaches for sustainable animal nutrition, addressing the pressing concern of reducing reliance on traditional feed methods. Genetic improvement through breeding strategies is examined in detail, highlighting the importance of resilient and productive livestock for sustainable production systems.

Efficient resource management is a critical aspect of sustainable animal production, as it can contribute to both environmental conservation and cost-effectiveness. This review delves into various resource conservation techniques and efficiency-enhancing practices that promote sustainable animal production systems. Moreover, the growing issue of waste management is tackled, proposing eco-friendly solutions that minimize environmental impact and maximize resource utilization. Another crucial component of sustainable animal production is proactive animal health management, focusing on preventive measures and the development of novel interventions. The review discusses the potential of advanced diagnostics, precision medicine, and vaccinations in minimizing disease outbreaks and optimizing animal health.

Furthermore, the integration of social and economic factors is emphasized, highlighting the need for multidimensional approaches to achieve sustainability and resilience in animal production systems. The importance of stakeholder engagement, policy support, and market incentives is elucidated to drive the adoption of innovative strategies. The review presents several successful case studies that effectively implemented innovative approaches in sustainable animal production, demonstrating the feasibility and benefits of such strategies. Finally, future directions for the sector are proposed, urging continuous advancements and collaborations to ensure a sustainable and resilient animal production system that fulfills global food demands while minimizing environmental impact.

Abstract 381 | pdf Downloads 209


1. Anderson, K., & Nelgen, S. (2015). Global food markets: Effects of changes in consumption, trade, and policies. Food Policy, 61, 2-10.
2. Bacteriophage therapy revitalizes the use of antibiotics in aquaculture (BTAQ). 2019. Nature Biotechnology, 37, pp.789-796.
3. Bassler, A. (2023). Cofund ERA-NET “Sustainable Animal Production Systems”(SusAn) COMMON STRATEGIC RESEARCH AND INNOVAT.
4. Berckmans, D. (2014). Precision livestock farming for pigs. Animal Frontiers, 4(2), 32-37.
5. Berckmans, D., 2014. Precision livestock farming: a ‘win-win situation’. Journal of agricultural engineering research, 78(1), pp.1-6.
6. Berckmans, D., 2014. Precision livestock farming: a ‘win-win situation’. Journal of Agricultural Engineering Research, 78(1), pp.1-6.
7. Berckmans, D., Thorup, V., Maltz, E., Zhao, Y., & Hatzopoulos, N. (2020). Precision Livestock Farming technologies-The influence of automation on sustainable livestock production. Computers and Electronics in Agriculture, 170, 105221.
8. Berckmans, D., Vandermeulen, J., Vranken, E., & Schmidt-Corsault, J. (2014). Precision livestock farming for animal health, welfare and production efficiency. Journal of Agricultural Engineering Research, 65(2), 1-9.
9. Berckmans, D., Vranken, E., Buysse, F. X., Roels, S., Saeys, W., Leen, B., ... & Niewold, T. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. In Animal Welfare in a Changing World (pp. 335-353). Springer.
10. Calderón Díaz, J. A., Maltz, E., Tapia, M. O., Steensels, M., & Berckmans, D. (2020). Application of Precision Livestock Farming for improving sustainability of livestock production systems. Journal of Cleaner Production, 258, 120730.
11. Capper, J. L., & Cady, R. A. (2020). A Systems Approach to Environmental Stewardship in Animal Agriculture. Journal of Animal Science, 98(9). doi: 10.1093/jas/skaa242.
12. Capper, J.L., 2013. The environmental impact of beef production in the United States: 1977 compared with 2007. Journal of Animal Science, 91(12), pp. 5431-5441.
13. Caro, D., & Davis, S. J. (2019). Opportunities to improve the environmental performance of livestock systems through plant-based diets. Environmental Research Letters, 14(9), 093007.
14. Castonguay, A. C., Polasky, S., Holden, M. H., Herrero, M., Chang, J., Mason-D’Croz, D & McDonald-Madden, E. (2023). MOO-GAPS: A multi-objective optimization model for global animal production and sustainability. Journal of Cleaner Production, 396, 136440.
15. Chen, J., & Kononoff, P. J. (2016). Opportunities and challenges in improving the efficiency of nutrient utilization in dairy cows. Animal Production Science, 56(5). doi: 10.1071/AN13970.
16. Chowdhury, R., et al. (2017). Potential of anaerobic digestion to address challenges in agricultural waste management. Frontiers in Environmental Science, 5. doi: 10.3389/fenvs.2017.00050.
17. Davis, G.S., 2014. Antimicrobial resistance. Clinical Infectious Diseases, 59(Supplement_6), pp.S369-S373.
18. Dong, H., Men, L., Zhang, S., & Wei, D. (2018). Development and evaluation of precision automatic feeding system based on machine vision for dairy cows. Transactions of the Chinese Society of Agricultural Engineering, 34(11), 80-86.
19. Eckard, R.J., et al., 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 130(1-3), pp.47-56.
20. Fang, F., Liu, H., & Keesstra, S. (2019). Technologies for recovering nutrients from livestock wastewater: A review. Sustainability, 11(11), 3054.
21. Ferguson, J. D., & Peel, R. K. (2019). Smart feeding technology and its impact on dairy cow production, behavior, and welfare. Journal of Dairy Science, 102(6), 5727-5735.
22. Fonseca, N. V. B., Cardoso, A. D. S., Bahia, A. S. R. D. S., Messana, J. D., Vicente, E. F., & Reis, R. A. (2023). Additive tannins in ruminant nutrition: An alternative to achieve sustainability in animal production. Sustainability, 15(5), 4162.
23. Fronte, B., Floris, B., Bozzi, R., & Fontanesi, L. (2018). Breeding and Precision Livestock Farming: Opportunities and Challenges for Genetic Improvement in the Big Data Era. Italian Journal of Animal Science, 17(2), 282-297.
24. Gasco, L., et al. (2019). Insect protein for poultry diets: A study on qualitative characteristics of black soldier fly larvae meal. Animals, 9(5), 210.
25. Goddard, M. E., and Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323-330.
26. Goodland, R., & Anhang, J. (2014). Livestock and climate change: What if the key actors in climate change are... cows, pigs, and chickens? World Watch Magazine, 22(6), 10-19.
27. Guo, Y., Li, H., Xu, R., Edmondson, A. J., Wathes, C. M., Cheng, Z., & Zhang, S. J. (2020). Advances and prospects in precision livestock farming for dairy cows. Engineering, 6(5), 525-536.
28. Habier, D., et al. (2007). Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics, 8(1), 1-17.
29. Hayes, B. J., & Daetwyler, H. D. (2019). Genomic selection: past, present, and future. Genetics, 7, 39.
30. He, P. J., et al. (2016). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 58. doi: 10.1016/j.rser.2015.12.309.
31. Heath, L. A., Bandara, M. S., Jordan, N. R., & Chen, D. (2019). Effectiveness of environmental regulations in animal agriculture: An integrated assessment using adaptive modelling. Science of the Total Environment, 659, 306–314.
32. Heikkilä, M., Nousiainen, J. I., & Shamsuddin, A. H. M. (2019). Precision livestock farming technologies for welfare management in intensive livestock systems. Agriculture, 9(9), 185.
33. Hemsworth, P. H., & Coleman, G. J. (2011). Human-livestock interactions: The stockperson and the productivity and welfare of intensively farmed animals. CABI.
34. Henryon, M., Berg, P., Ostersen, T., & Sørensen, A. C. (2014). Inclusion of genomics in genetic evaluation of livestock in low-income countries of Africa. Journal of Animal Breeding and Genetics, 131(4), 223–230.
35. Herrero, M., et al., 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110(52), pp.20888-20893.
36. Heuer, C., Schukken, Y. H., Nielen, M., & Hogeveen, H. (2017). Sustainability of Dutch dairy farming after 2 years of implementing a selective dry cow therapy program. Journal of Dairy Science, 100(1), 691-700.
37. Jalal, H., Giammarco, M., Lanzoni, L., Akram, M. Z., Mammi, L. M., Vignola, G., ... & Fusaro, I. (2023). Potential of Fruits and Vegetable By-Products as an Alternative Feed Source for Sustainable Ruminant Nutrition and Production: A Review. Agriculture, 13(2), 286.
38. Jenko, J., Wiggans, G. R., Cooper, T. A., & Cole, J. B. (2015). Genomic selection using low-density marker panels. Genetics Selection Evolution, 47, 23.
39. Jose, S., & Gillespie, A. R. (Eds.). (2018). Agroforestry and Climate Change. Cambridge University Press.
40. Kamani, M. A., El-huby, A., & Hassanien, A. E. (2018). Artificial intelligence techniques for an intelligent environment with knowledge-based services in a smart poultry production farm. Sustainability, 10(8), 2678.
41. Kandemir, N., et al., 2020. Animal welfare and sustainability in intensive livestock production systems. Sustainability, 12(7), p.2754.
42. Kang, Y., et al., 2016. Circular Agriculture: A Multifunctional Approach to Enhancing Soil Fertility and Agricultural Sustainability. Environmental Science & Technology, 50(4), pp.1885–1894.
43. Kemmett, K., Williams, N. J., Chaloner, G., Humphrey, S., Wigley, P., & Humphrey, T. (2018). The contribution of breed to the risk of Campylobacter carriage in broiler: a cross-sectional and cohort study. Biomed Central, 8(1), 1-9.
44. Khanal, H., et al. (2018). Algae: A potential alternative to conventional animal feed sources for improved animal health and for reduced environmental impact. Foods, 7(3), 41.
45. Khanal, H., et al. (2021). Microalgae as Alternative Feed Ingredients for Livestock and Aquaculture: Opportunities and Challenges. Algal Research, 55, 102206.
46. Lammers, P., Honeyman, M., Harmon, J., Helmers, M., Livingston, M., & Stewart, S. (2017). Precision livestock farming: A suite of electronic systems to ensure environmental sustainability and improve animal welfare in animal production systems. Journal of Animal Science, 95(8), 3079-3085.
47. Lees, P., Seddon, J. M., & Mills, P. C. (2021). Innovating to reduce antibiotic use in food animals. Veterinary Record, 189(10), e40.
48. Lupoian, D., et al. (2020). Water conservation strategies in livestock production: A review. Agricultural Water Management, 228. doi: 10.1016/j.agwat.2020.106524.
49. Makkar, H. P., Tran, G., & Heuzé, V. (2014). Ankerschmidtia fedtschenkoivae versus menhadenmeal as protein supplement: Biochemical and microbial profile in piglets. Journal of Animal Science and Biotechnology, 5(1), 1-10.
50. Makkar, H.P., et al., 2014. Use of agro-industrial residues as ruminant feeds: methodological aspects related to environmental outputs and options for their recycling – a review. Asian-Australasian journal of animal sciences, 27(1), pp.1-20.
51. Mench, J. A. (2008). Farm animal welfare in the context of other society issues: Toward sustainable systems. Journal of Applied Animal Welfare Science, 11(4), 296–309.
52. Mialon, M. M., Vial, F., & Stacey, D. A. (2019). Precision livestock farming and the ethics of the Internet of Things. Precision Livestock Farming'19, 22-24.
53. Mindermann, P., Vaughn, K. E., Furnas, B. J., Hogue, I. B., & Patil, A. A. (2020). Consumer demand and supply dynamics in perishable goods markets. Nature Communications, 11(1), 1-11.
54. Nijdam, J., et al., 2012. Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. PloS one, 7(12), p.e51145.
55. Nogales-Mérida, S., et al. (2020). Insects for Sustainable Animal Feed: Insect-Based Ingredients in Poultry Diets. Animals, 10(7), 1067.
56. Pandey, P., Jayaraman, P. P., & Yadav, B. (2019). Internet of Things (IoT) in agriculture: System architecture, approaches, and applications. Computers and Electronics in Agriculture, 163, 104859.
57. Pérez-Jiménez, I., Martínez-Fernández, A., Abuelo, Á., Hernández, J., & Calvo, J. H. (2021). Nutrition and the immune system in farm animals. Frontiers in Veterinary Science, 8, 666445.
58. Piewngam, P., et al., 2018. Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 562(7728), pp.532–537.
59. Ponnampalam, E. N., & Holman, B. W. (2023). Sustainability II: Sustainable animal production and meat processing. In Lawrie's Meat Science (pp. 727-798). Woodhead Publishing.
60. Psota, E. T., Soltan, M. M., Martínez-Paredes, E., & Berckmans, D. (2020). Development and application of machine learning models for predicting dairy cow behavior and performance using accelerometer data. Applied Sciences, 10(4), 1302.
61. Renna, M., et al. (2018). Evaluation of the Potential of Fungal Biomass Protein Produced from Fusarium oxysporum Strain for Animal Feed. Journal of the Science of Food and Agriculture, 98(13), 4853-4860.
62. Rezar, V., Bruinsma, J., & Meuwissen, M. P. (2019). Precision Livestock Farming in pig production: A review. Livestock Science, 226, 135-145.
63. Rotolo, M. L., Wattiaux, M. A., & Dargatz, D. A. (2020). Biosecurity practices and their association with selected health and production parameters in US dairy herds. Preventive Veterinary Medicine,180, 105033.
64. Sarker, P., et al. (2018). Maximizing the Utilization of Marine Macro- and Microalgae in Sustainable Animal Production Systems: Feed Value, Challenges, and Opportunities. Frontiers in Marine Science, 5, 497.
65. Seadi, T., Rutz, D., Prassl, H., Köttner, M., & Finsterwalder, T. (2019). Biogas Handbook: Science, Production and Applications. Cambridge University Press.
66. Shao, Y., et al. (2021). Integration of constructed wetlands and advanced oxidation processes for wastewater treatment: A review. Science of The Total Environment, 777. doi: 10.1016/j.scitotenv.2021.145981.
67. Short, E., et al. (2020). Can Insect Protein Be a Useful Alternative Protein Ingredient for Aquaculture and Poultry Industries? Animals, 10(8), 1314.
68. Sigit, A., Uncu, O. R., & Odeh, M. (2020). Traceability in food supply chain: Blockchain technology-based solutions. Food and Bioproducts Processing, 124, 267–278.
69. Sobel, R., Stellmacher, T., Tarrant, M., & Coetzee, A. (2018). The effects of employee satisfaction on productivity in a livestock production system. Journal of Agricultural Economics, 69(3), 725-743.
70. Soyeurt, H., et al. (2017). Precision Feeding: Using Artificial Intelligence to Improve Efficiency in Dairy Cows. Journal of Dairy Science, 100(12). doi: 10.3168/jds.2017-12883.
71. St-Pierre, N., et al. (2015). Life cycle assessment of the production of milk from Canadian dairy farms: A national perspective. Journal of Dairy Science, 98(11). doi: 10.3168/jds.2015-9372.
72. Strappini, A. C., Frutos, P., Casasús, I., Calsamiglia, S., & Ferret, A. (2019). Precision livestock farming technologies applied to extensive systems. Animals, 9(11), 958.
a. Stremler, M. A., et al. (2021). Technologies for odor control in livestock facilities: A review. Journal of Environmental Management, 277. doi: 10.1016/j.jenvman.2020.111408.
73. Tang, L., Diao, H., Duan, Z., Zhang, S., Wang, Y., Zhou, Z., & Han, X. (2020). Effects of Bacillus spp. as direct-fed microbial supplementation in diets of growing pigs: A review. Animals, 10(1), 166.
74. Tedeschi, L. O. (2023). The prevailing mathematical modelling classifications and paradigms to support the advancement of sustainable animal production. animal, 100813.
75. Thakur, K., de Cássia Ramos do Egypto Queiroga, R., Ribeiro de Araújo, J. V., Dias de Castro, S. C., & de Oliveira Carvalho, C. J. (2019). Factors affecting hygiene and sanitation of dairy farms in the semiarid region. Preventive Veterinary Medicine,163, 94-101.:
76. Thaller, G., Kroezen, V., & de Haas, Y. (2021). Precision feeding strategies to optimize the environmental impact of livestock production systems. Animal, 15(3), 100139.
77. Thornton, P.K., et al., 2017. Livestock and climate change: What if the key actors in climate change are...cows, pigs, and chickens? Solutions, 8(2), pp.65-78.
78. VanRaden, P. M., et al. (2017). Genomic selection in the era of low-density genotyping: challenges and opportunities. Journal of Animal Science, 95(5), 1823-1836.
79. Vinnerås, B., et al. (2019). Biogas from manure and other organic waste: Recent technologies and sustainable production. Renewable and Sustainable Energy Reviews, 101. doi: 10.1016/j.rser.2018.10.031.
80. Wang, Q., et al. (2020). A comprehensive review on optimization of composting process for organic solid waste. Waste Management, 112. doi: 10.1016/j.wasman.2020.02.012.
81. Widowski, T. M., Torrey, S., & Thomson, R. (2015). Precision livestock farming: a sound agricultural technology? Journal of Animal Science, 93(1), 133-139.
82. Wittenburg, D., Genzel, D., Badke, Y. M., & Thaller, G. (2020). Advanced methods for genome-wide breeding values using high-density genotypes. Frontiers in Genetics, 10, 1367.
83. Wolf, C. A., et al. (2020). Selection-driven breeding goals in livestock for efficient and sustainable production. Nature Food, 1(12). doi: 10.1038/s43016-020-00176-6.
84. Zhang, A., He, Q., Sehabin, S., & Yu, L. (2021). Anaerobic digestion of livestock waste: A review on process optimization and sustainable application. Waste Management, 120, 559–571.
85. Zhao, J. Y., Wei, L., Ma, B., Li, W., Pan, S., Guo, X. S & Onwurah, I. N. E. (2018). Multifunctional anaerobic digestion system for efficient waste treatment and chemical-pharmaceutical energy generation towards a circular economy. Applied Energy, 228, 905-912.