Main Article Content

Sonia Sharma
Jagadeesh C Bose. K


Biocatalyst, Microbial Lipase, Therapeutic applications, Modulators of lipase activity


Microbial lipases, in particular, are becoming more valuable because they can speed up a wide range of chemical reactions in both water and dry environments. The global market for lipase is projected to reach USD 797.7 million by 2025, growing at a compound annual growth rate (CAGR) of 6.2% between 2017 and 2025. The creation of novel and improved lipases using molecular techniques is a recent development in the field of lipase research. As an illustration, the merger of controlled enzyme evolution and rational enzyme design to achieve desired features in lipases. As they hydrolysed fats into fatty acids and glycerol at the water—lipid interface and may reverse the reaction in non-aqueous environments, lipases stand out among biocatalysts and have a wide range of biotechnological uses. These enzymes' remarkable stability in organic solvents has propelled them to the forefront of organic synthesis, where they are being used in the creation of cutting-edge pharmaceuticals, surfactants, bioactive molecules, and oleochemicals. Lipase-catalysed trans- and inter-esterification reactions have also been utilized in the fat industry. Given the breadth of lipase's potential uses, the industrialization of lipase production has been a hot topic amongst microbiologists, process engineers, and biochemists. Microbes, particularly fungi, and bacteria, have been shown to be the preferred production tools in this field of research. Several microbial lipases have had their structures determined recently, expanding our understanding of the enzyme's unusual catalytic mechanism. An overview of lipase-producing bacteria as probiotics, their therapeutic applications, and their immunomodulatory properties is attempted in this paper.

Abstract 173 | Pdf Downloads 91


1. Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable chemistry. Chemical reviews, 118(2), 801-838.
2. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.
3. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185-194.
4. Woodley, J. M. (2020). New frontiers in biocatalysis for sustainable synthesis. Current Opinion in Green and Sustainable Chemistry, 21, 22-26.
5. Ni, Y., Holtmann, D., & Hollmann, F. (2014). How green is biocatalysis? To calculate is to know. ChemCatChem, 6(4), 930-943.
6. Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology advances, 33(7), 1443-1454.
7. Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238.
8. Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607.
9. DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437-6474.
10. Bernal, C., Rodriguez, K., & Martinez, R. (2018). Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances, 36(5), 1470-1480.
11. Kirk, O. T., Vedel Borchert, and C. Crone Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol, 13, 345-351.
12. Benkovic, S. J., & Hammes-Schiffer, S. (2003). A perspective on enzyme catalysis. Science, 301(5637), 1196-1202.
13. Schoemaker, H. E., Mink, D., & Wubbolts, M. G. (2003). Dispelling the myths--biocatalysis in industrial synthesis. Science, 299(5613), 1694-1697.
14. Bornscheuer, U. T. (2018). The fourth wave of biocatalysis is approaching. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2110), 20170063.
15. Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of cleaner production, 216, 117-128.
16. Kittl, R., & Withers, S. G. (2010). New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydrate research, 345(10), 1272-1279.
17. Bugg, T. D. (2004). Diverse catalytic activities in the αβ-hydrolase family of enzymes: activation of H2O, HCN, H2O2, and O2. Bioorganic chemistry, 32(5), 367-375.
18. O'Brien, P. J., & Herschlag, D. (1999). Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry & biology, 6(4), R91-R105.
19. Bornscheuer, U. T., & Kazlauskas, R. J. (2012). Enzymatic catalytic promiscuity and the design of new enzyme catalyzed reactions. In Enzyme Catalysis in Organic Synthesis, Third Edition (pp. 1695-1733). Wiley-VCH.
20. Hernandez, K., Berenguer-Murcia, A., C Rodrigues, R., & Fernandez-Lafuente, R. (2012). Hydrogen peroxide in biocatalysis. A dangerous liaison. Current Organic Chemistry, 16(22), 2652-2672.
21. Wang, Y., San, K. Y., & Bennett, G. N. (2013). Cofactor engineering for advancing chemical biotechnology. Current opinion in biotechnology, 24(6), 994-999.
22. Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme research, 2010.
23. Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International journal of molecular sciences, 14(1), 1232-1277.
24. Cowan, D. A., Ramond, J. B., Makhalanyane, T. P., & De Maayer, P. (2015). Metagenomics of extreme environments. Current opinion in microbiology, 25, 97-102.
25. Ferrer, M., Martínez‐Martínez, M., Bargiela, R., Streit, W. R., Golyshina, O. V., & Golyshin, P. N. (2016). Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microbial biotechnology, 9(1), 22-34.
26. Pérez-Cobas, A. E., Gosalbes, M. J., Friedrichs, A., Knecht, H., Artacho, A., Eismann, K., ... & Moya, A. (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut, 62(11), 1591-1601.
27. Beloqui, A., Pita, M., Polaina, J., Martínez-Arias, A., Golyshina, O. V., Zumárraga, M., ... & Golyshin, P. N. (2006). Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. Journal of Biological Chemistry, 281(32), 22933-22942.
28. Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Reyes‐Duarte, D., Santos, V. A. M. D., ... & Golyshin, P. N. (2005). Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology, 7(12), 1996-2010.
29. Madhavan, A., Sindhu, R., Binod, P., Sukumaran, R. K., & Pandey, A. (2017). Strategies for design of improved biocatalysts for industrial applications. Bioresource technology, 245, 1304-1313.
30. Bornscheuer, U. T., & Pohl, M. (2001). Improved biocatalysts by directed evolution and rational protein design. Current opinion in chemical biology, 5(2), 137-143.
31. Chowdhury, R., & Maranas, C. D. (2020). From directed evolution to computational enzyme engineering—a review. AIChE Journal, 66(3), e16847.
32. Arnold, F. H. (2018). Directed evolution: bringing new chemistry to life. Angewandte Chemie International Edition, 57(16), 4143-4148.
33. Bornscheuer, U. T., Hauer, B., Jaeger, K. E., & Schwaneberg, U. (2019). Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angewandte Chemie International Edition, 58(1), 36-40.
34. Zeymer, C., & Hilvert, D. (2018). Directed evolution of protein catalysts. Annual review of biochemistry, 87, 131-157.
35. Kasrayan, A., Bocola, M., Sandström, A. G., Lavén, G., & Bäckvall, J. E. (2007). Prediction of the Candida antarctica lipase A protein structure by comparative modeling and site‐directed mutagenesis. ChemBioChem, 8(12), 1409-1415.
36. Damián-Almazo, J. Y., & Saab-Rincón, G. (2013). Site-directed mutagenesis as applied to biocatalysts. Genetic Manipulation of DNA and Protein–Examples from Current Research. InTech, Rijeka, Croatia, 303-330.
37. Heuvel, R. H. V. D., Laane, C., & Berkel, W. J. V. (2001). Exploring the Biocatalytic Potential of Vanillyl‐Alcohol Oxidase by Site‐Directed Mutagenesis. Advanced Synthesis & Catalysis, 343(6‐7), 515-520.
38. Chin, J. (1991). Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach. Accounts of Chemical Research, 24(5), 145-152.
39. Santiago, G., Martínez-Martínez, M., Alonso, S., Bargiela, R., Coscolín, C., Golyshin, P. N., ... & Ferrer, M. (2018). Rational engineering of multiple active sites in an ester hydrolase. Biochemistry, 57(15), 2245-2255.
40. Boutureira, O., & Bernardes, G. J. (2015). Advances in chemical protein modification. Chemical reviews, 115(5), 2174-2195.
41. Sakamoto, S., & Hamachi, I. (2019). Recent progress in chemical modification of proteins. Analytical Sciences, 35(1), 5-27.
42. Spicer, C. D., & Davis, B. G. (2014). Selective chemical protein modification. Nature communications, 5(1), 1-14.
43. Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(15), 6223-6235.
44. Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—aqueous and non-aqueous environment. Process biochemistry, 43(10), 1019-1032.
45. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and microbial technology, 40(6), 1451-1463.
46. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290-6307.
47. Garcia‐Galan, C., Berenguer‐Murcia, Á., Fernandez‐Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904.
48. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435-456.
49. Velasco‐Lozano, S., Benítez‐Mateos, A. I., & López‐Gallego, F. (2017). Co‐immobilized phosphorylated cofactors and enzymes as self‐sufficient heterogeneous biocatalysts for chemical processes. Angewandte Chemie International Edition, 56(3), 771-775.
50. Barberis, S., Guzmán, F., Illanes, A., López-Santín, J., Wilson, L., Álvaro, G., ... & Feijoo, G. (2008). Study cases of enzymatic processes. In Enzyme Biocatalysis (pp. 253-378). Springer, Dordrecht.
51. de Miranda, A. S., Miranda, L. S., & de Souza, R. O. (2015). Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 33(5), 372-393.
52. Reetz, M. T. (2002). Lipases as practical biocatalysts. Current opinion in chemical biology, 6(2), 145-150.
53. Siirola, E., Frank, A., Grogan, G., & Kroutil, W. (2013). C C Hydrolases for Biocatalysis. Advanced Synthesis & Catalysis, 355(9), 1677-1691.
54. Busto, E., Gotor-Fernández, V., & Gotor, V. (2010). Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chemical Society Reviews, 39(11), 4504-4523.
55. Faber, K., Fessner, W. D., & Turner, N. J. (2015). Glycosyltransferases. Biocatalysis in organic synthesis 1.
56. Lozano, P., Bernal, J. M., & Vaultier, M. (2011). Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel, 90(11), 3461-3467.
57. Lozano, P., Nieto, S., L Serrano, J., Perez, J., Sanchez-Gomez, G., Garcia-Verdugo, E., & V Luis, S. (2017). Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini-Reviews in Organic Chemistry, 14(1), 65-74.
58. Lozano, P., Bernal, J. M., & Navarro, A. (2012). A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green chemistry, 14(11), 3026-3033.
59. Wang, B., Zhang, C., He, Q., Qin, H., Liang, G., & Liu, W. (2018). Efficient resolution of (R, S)-1-(1-naphthyl) ethylamine by Candida antarctica lipase B in ionic liquids. Molecular Catalysis, 448, 116-121.
60. Bornscheuer, U. T., & Kazlauskas, R. J. (2006). Hydrolases in organic synthesis: regio-and stereoselective biotransformations. John Wiley & Sons.
61. Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (2000). Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 77(4), 355-360.
62. Yadav, G. D., & Kamble, M. P. (2018). A green process for synthesis of geraniol esters by immobilized lipase from Candida antarctica B fraction in non-aqueous reaction media: Optimization and kinetic modeling. International Journal of Chemical Reactor Engineering, 16(7).
63. Schmid, R. D., & Verger, R. (1998). Lipases: interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37(12), 1608-1633.
64. Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., ... & Thim, L. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351(6326), 491-494.
65. Yaacob, N., Ahmad Kamarudin, N. H., Leow, A. T. C., Salleh, A. B., Raja Abd Rahman, R. N. Z., & Mohamad Ali, M. S. (2017). The role of solvent-accessible Leu-208 of cold-active Pseudomonas fluorescens strain AMS8 lipase in interfacial activation, substrate accessibility and low-molecular weight esterification in the presence of toluene. Molecules, 22(8), 1312.
66. Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in bioengineering and biotechnology, 5, 16.
67. Martinelle, M., Holmquist, M., & Hult, K. (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1258(3), 272-276.
68. Uppenberg, J., Hansen, M. T., Patkarr, S., & Jones, T. A. (1994). The Sequence, Crystal-Structure Determination and Refinement of 2 Crystal Forms of Lipase-B from Candida-Antarctica (Vol 2, Pg 293, 1994). Structure, 2(5), 453-454.
69. Uppenberg, J., Oehrner, N., Norin, M., Hult, K., Kleywegt, G. J., Patkar, S., ... & Jones, T. A. (1995). Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry, 34(51), 16838-16851.
70. Carrasco-López, C., Godoy, C., de Las Rivas, B., Fernández-Lorente, G., Palomo, J. M., Guisán, J. M., ... & Hermoso, J. A. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry, 284(7), 4365-4372.
71. Chapus, C., Semeriva, M., Bovier-Lapierre, C., & Desnuelle, P. (1976). Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry, 15(23), 4980-4987.
72. Maruyama, T., Nakajima, M., Uchikawa, S., Nabetani, H., Furusaki, S., & Seki, M. (2000). Oil-water interfacial activation of lipase for interesterification of triglyceride and fatty acid. Journal of the American Oil Chemists' Society, 77(11), 1121-1127.
73. Zisis, T., Freddolino, P. L., Turunen, P., van Teeseling, M. C., Rowan, A. E., & Blank, K. G. (2015). Interfacial activation of Candida antarctica lipase B: combined evidence from experiment and simulation. Biochemistry, 54(38), 5969-5979.
74. Tacias-Pascacio, V. G., Ortiz, C., Rueda, N., Berenguer-Murcia, Á., Acosta, N., Aranaz, I., ... & Alcántara, A. R. (2019). Dextran aldehyde in biocatalysis: More than a mere immobilization system. Catalysts, 9(7), 622.
75. Verger, R., & De Haas, G. H. (1976). Interfacial enzyme kinetics of lipolysis. Annual review of biophysics and bioengineering, 5(1), 77-117.
76. Verger, R. (1997). ‘Interfacial activation’of lipases: facts and artifacts. Trends in Biotechnology, 15(1), 32-38.
77. Palomo, J. M., Peñas, M. M., Fernández-Lorente, G., Mateo, C., Pisabarro, A. G., Fernández-Lafuente, R., ... & Guisán, J. M. (2003). Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules, 4(2), 204-210.
78. Wang, P., He, J., Sun, Y., Reynolds, M., Zhang, L., Han, S., ... & Lin, Y. (2016). Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. Applied microbiology and biotechnology, 100(13), 5883-5895.
79. Zhang, K., Jin, Z., Wang, P., Zheng, S. P., Han, S. Y., & Lin, Y. (2017). Improving the catalytic characteristics of lipase-displaying yeast cells by hydrophobic modification. Bioprocess and biosystems engineering, 40(11), 1689-1699.
80. Fernández‐Lorente, G., Palomo, J. M., Fuentes, M., Mateo, C., Guisán, J. M., & Fernández‐Lafuente, R. (2003). Self‐assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and bioengineering, 82(2), 232-237.
81. Palomo, J. M., Ortiz, C., Fuentes, M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2004). Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. Journal of Chromatography A, 1038(1-2), 267-273.
82. Palomo, J. M., Ortiz, C., Fernández-Lorente, G., Fuentes, M., Guisán, J. M., & Fernández-Lafuente, R. (2005). Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme and microbial technology, 36(4), 447-454.
83. Manoel, E. A., Dos Santos, J. C., Freire, D. M., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53-57.
84. Rodrigues, R. C., Virgen-Ortíz, J. J., Dos Santos, J. C., Berenguer-Murcia, Á., Alcantara, A. R., Barbosa, O., ... & Fernandez-Lafuente, R. (2019). Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology advances, 37(5), 746-770.
85. Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisán, J. M. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and physics of lipids, 93(1-2), 185-197.
86. Al-Duri, B., & Yong, Y. P. (2000). Lipase immobilisation: an equilibrium study of lipases immobilised on hydrophobic and hydrophilic/hydrophobic supports. Biochemical Engineering Journal, 4(3), 207-215.
87. Palomo, J. M., Fernandez-Lorente, G., Mateo, C., Ortiz, C., Fernandez-Lafuente, R., & Guisan, J. M. (2002). Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 31(6), 775-783.
88. Fernandez-Lorente, G., Cabrera, Z., Godoy, C., Fernandez-Lafuente, R., Palomo, J. M., & Guisan, J. M. (2008). Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry, 43(10), 1061-1067.
89. Palomo, J. M., Fernández-Lorente, G., Mateo, C., Fuentes, M., Fernández-Lafuente, R., & Guisan, J. M. (2002). Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry, 13(12), 1337-1345.
90. Rueda, N., Dos Santos, J. C., Ortiz, C., Torres, R., Barbosa, O., Rodrigues, R. C., ... & Fernandez‐Lafuente, R. (2016). Chemical modification in the design of immobilized enzyme biocatalysts: Drawbacks and opportunities. The Chemical Record, 16(3), 1436-1455.
91. Melani, N. B., Tambourgi, E. B., & Silveira, E. (2020). Lipases: from production to applications. Separation & Purification Reviews, 49(2), 143-158.
92. Melani, N. B., Tambourgi, E. B., & Silveira, E. (2020). Lipases: from production to applications. Separation & Purification Reviews, 49(2), 143-158.
93. Chandra, P., Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1), 1-42.
94. Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in lipid research, 57, 40-54.
95. Strzelczyk, P., Bujacz, G., Kiełbasiński, P., & Błaszczyk, J. (2015). Crystal and molecular structure of hexagonal form of lipase B from Candida antarctica. Acta Biochimica Polonica, 63(1), 103-109.
96. Mala, J. G. S., & Takeuchi, S. (2008). Understanding Structural Features of Microbial Lipases–-An Overview. Analytical Chemistry Insights, 3, ACI-S551.
97. Kartal, F. (2016). Enhanced esterification activity through interfacial activation and cross‐linked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotechnology progress, 32(4), 899-904.
98. Wi, A. R., Jeon, S. J., Kim, S., Park, H. J., Kim, D., Han, S. J., ... & Kim, H. W. (2014). Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnology letters, 36(6), 1295-1302.
99. Peng, X. Q. (2013). Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface. Applied biochemistry and biotechnology, 169(2), 351-358.
100. Kaur, G., Singh, A., Sharma, R., Sharma, V., Verma, S., & Sharma, P. K. (2016). Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech, 6(1), 1-10.
101. Champagne, E., Strandman, S., & Zhu, X. X. (2016). Recent developments and optimization of lipase‐catalyzed lactone formation and ring‐opening polymerization. Macromolecular Rapid Communications, 37(24), 1986-2004.
102. Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., & Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3), 445-458.
103. Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., & Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3), 445-458.
104. Zechner, R., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, A., & Madeo, F. (2012). FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell metabolism, 15(3), 279-291.
105. Gupta, P., Upadhyay, L. S. B., & Shrivastava, R. (2011). Lipase Catalyzed-transesterification of Vegetable Oils by Lipolytic. Research Journal of Microbiology, 6(3), 281-288.
106. Goswami, D., Basu, J. K., & De, S. (2013). Lipase applications in oil hydrolysis with a case study on castor oil: a review. Critical reviews in biotechnology, 33(1), 81-96.
107. Kim, B. H., & Akoh, C. C. (2015). Recent research trends on the enzymatic synthesis of structured lipids. Journal of Food Science, 80(8), C1713-C1724.
108. Bourlieu, C., Bouzerzour, K., Ferret‐Bernard, S., Bourgot, C. L., Chever, S., Menard, O., ... & Huërou‐Luron, I. L. (2015). Infant formula interface and fat source impact on neonatal digestion and gut microbiota. European Journal of Lipid Science and Technology, 117(10), 1500-1512.
109. Yilmaz, E., Can, K., Sezgin, M., & Yilmaz, M. (2011). Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresource Technology, 102(2), 499-506.
110. Stergiou, P. Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., ... & Papamichael, E. M. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnology advances, 31(8), 1846-1859.
111. Phuah, E. T., Tang, T. K., Lee, Y. Y., Choong, T. S. Y., Tan, C. P., & Lai, O. M. Food Bioprocess Tech. 2015, 8, 1169–1186. DOI: https://doi. org/10.1007/s11947-015-1505-0.
112. Patel, U., Chauhan, K., & Gupte, S. (2018). Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil. 3 Biotech, 8(4), 1-12.
113. Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014.
114. Madalozzo, A. D., Martini, V. P., Kuniyoshi, K. K., de Souza, E. M., Pedrosa, F. O., Glogauer, A., ... & Krieger, N. (2015). Immobilization of LipC12, a new lipase obtained by metagenomics, and its application in the synthesis of biodiesel esters. Journal of molecular catalysis b: enzymatic, 116, 45-51.
115. López, B. C., Cerdán, L. E., Medina, A. R., López, E. N., Valverde, L. M., Peña, E. H., ... & Grima, E. M. (2015). Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification. Journal of bioscience and bioengineering, 119(6), 706-711.
116. Hassan, S. (2014). Lipase Catalyzed Aminolysis as An Entry to Consecutive Multicomponent Reactions (Doctoral dissertation, Düsseldorf, Heinrich-Heine-Universität, Diss., 2014).
117. Xu, F., Wu, Q., Chen, X., Lin, X., & Wu, Q. (2015). A Single lipase‐catalysed one‐pot protocol combining aminolysis resolution and aza‐michael addition: an easy and efficient way to synthesise β‐amino acid esters. European Journal of Organic Chemistry, 2015(24), 5393-5401.
118. Sanfilippo, C., Nicolosi, G., & Patti, A. (2014). Milnacipran as a challenging example of aminomethyl substrate for lipase-catalyzed kinetic resolution. Journal of Molecular Catalysis B: Enzymatic, 104, 82-86.
119. Garcia Linares, G., Arroyo Mañez, P., & Baldessari, A. (2014). Lipase‐catalyzed synthesis of substituted phenylacetamides: hammett analysis and computational study of the enzymatic aminolysis. European Journal of Organic Chemistry, 2014(29), 6439-6450.
120. Hassan, S., Ullrich, A., & Müller, T. J. (2015). Consecutive three-component synthesis of (hetero) arylated propargyl amides by chemoenzymatic aminolysis–Sonogashira coupling sequence. Organic & Biomolecular Chemistry, 13(5), 1571-1576.
121. Couturier, L., Taupin, D., & Yvergnaux, F. (2009). Lipase-catalyzed chemoselective aminolysis of various aminoalcohols with fatty acids. Journal of Molecular Catalysis B: Enzymatic, 56(1), 29-33.
122. Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International journal of molecular sciences, 16(9), 20774-20840.
123. Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of cleaner production, 216, 117-128.
124. Padhi, S. K., Haas, M., & Bornscheuer, U. T. (2012). Lipase‐catalyzed transesterification to remove saturated MAG from biodiesel. European Journal of Lipid Science and Technology, 114(8), 875-879.
125. Ungcharoenwiwat, P., & Aran, H. (2018). Transesterification reaction for palm based wax esters by immobilized lipase EQ3 isolated from wastewater of fish canning industry. The Journal of Applied Science, 17(Special), 9-17.
126. Andualema, B., & Gessesse, A. (2012). Microbial lipases and their industrial applications. Biotechnology, 11(3), 100.
127. Okino-Delgado, C. H., Prado, D. Z. D., Facanali, R., Marques, M. M. O., Nascimento, A. S., Fernandes, C. J. D. C., ... & Fleuri, L. F. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLoS One, 12(10), e0186246.
128. Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: advantages and applications. Biological Procedures Online, 18(1), 1-11.
129. Suci, M., Arbianti, R., & Hermansyah, H. (2018). Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. In IOP Conference Series: Earth and Environmental Science (Vol. 105, No. 1, p. 012126). IOP Publishing.
130. Tripathi, R., Singh, J., kumar Bharti, R., & Thakur, I. S. (2014). Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia, 54, 518-529.
131. Bharathi, D., Rajalakshmi, G., & Komathi, S. (2019). Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University-Science, 31(4), 898-901.
132. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., ... & Nadeem, H. (2018). Bacterial lipases: a review on purification and characterization. Progress in biophysics and molecular biology, 132, 23-34.
133. Pandey, N., Dhakar, K., Jain, R., & Pandey, A. (2016). Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere, 7(10), 1533-1545.
134. Roy, M., Kumar, R., Ramteke, A., & Sit, N. (2021). Identification of lipase producing fungus isolated from dairy waste contaminated soil and optimization of culture conditions for lipase production by the isolated fungus. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 698-704.
135. Bharathi, D., & Rajalakshmi, G. (2019). Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, 22, 101368
136. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. (1992). Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. The Journal of Biochemistry, 112(5), 598-603.
137. Kukreja, V., & Bera, M. B. (2005). Lipase from Pseudomonas aeruginosa MTCC 2488: Partial purification, characterization and calcium dependent thermostability.
138. Kumar, A., Parihar, S. S., & Batra, N. (2012). Enrichment, isolation and optimization of lipase-producing Staphylococcus sp. from oil mill waste (Oil cake). Journal of Experimental Sciences, 3(8), 26-30.
139. Khan, I. M., Chandan, R. C., & Shahani, K. M. (1976). Bovine pancreatic lipase. II. Stability and effect of activators and inhibitors. Journal of dairy science, 59(5), 840-846.
140. Ananthi, S., Immanuel, G., & Palavesam, I. (2013). Optimization of lipase production by Bacillus cereus strain MSU AS through submerged fermentation. Plant Sci Feed, 3(2), 31-39.
141. Sangeetha, R., Geetha, A., & Arulpandi, I. (2010). Concomitant production of protease and lipase by Bacillus licheniformis VSG1: production, purification and characterization. Brazilian journal of microbiology, 41, 179-185.
142. Ephraim, D. P., Bhat, S. G., & Muthuswam, C. K. (2014). Lipase production by immobilized marine Bacillus smithii BTMS11 and its potential application in wastewater treatment. Int. J. Curr. Biotechnol, 2, 1-8.
143. Sekhon, A., Dahiya, N., Tewari, R. P., & Hoondal, G. S. (2006). Production of extracellular lipase by Bacillus megaterium AKG-1 in submerged fermentation.
144. Sabat, S., Murthy, V. K., Pavithra, M., Mayur, P., & Chandavar, A. (2012). Production and characterisation of extracellular lipase from Bacillus stearothermophilus MTCC 37 under different fermentation conditions. Int. J. Eng. Res. Appl, 2, 1775-1781.
145. Kumar, R., Sharma, A., Kumar, A., & Singh, D. (2012). Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Appl Sci J, 16(7), 940-948.
146. Liu, Z. Q., Zheng, X. B., Zhang, S. P., & Zheng, Y. G. (2012). Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiological Research, 167(8), 452-460.
147. Pereira, E. B., de Castro, H. F., De Moraes, F. F., & Zanin, G. M. (2002). Esterification activity and stability of Candida rugosa lipase immobilized into chitosan. Applied biochemistry and biotechnology, 98, 977-986.
148. Chander, H., Chebbi, N. B., & Ranganathan, B. (1973). Lipase activity of Lactobacillus brevis. Archiv für Mikrobiologie, 92, 171-174.
149. Uppada, S. R., Gupta, A. K., & Dutta, J. R. (2012). Statistical optimization of culture parameters for lipase production from Lactococcus lactis and its application in detergent industry. Int J ChemTech Res, 4(4), 1509-1517.
150. Silva Lopes, M. F., Cunha, A. E., Clemente, J. J., Teixeira Carrondo, M. J., & Barreto Crespo, M. T. (1999). Influence of environmental factors on lipase production by Lactobacillus plantarum. Applied microbiology and biotechnology, 51, 249-254.
151. Ramakrishnan, V., Goveas, L. C., Narayan, B., & Halami, P. M. (2013). Comparison of lipase production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 using fish waste as substrate: optimization of culture conditions by response surface methodology. International Scholarly Research Notices, 2013.
152. Deive, F. J., Costas, M., & Longo, M. A. (2003). Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnology letters, 25, 1403-1406.
153. El-Sawah, M. M. A., Sherief, A. A., & Bayoumy, S. M. (1995). Enzymatic properties of lipase and characteristics production by Lactobacillus delbrueckii subsp. bulgaricus. Antonie van Leeuwenhoek, 67, 357-362.
154. Rashmi, B. S., & Gayathri, D. (2014). Partial purification, characterization of Lactobacillus sp. G5 lipase and their probiotic potential. Int Food Res J, 21(5), 1737-1743.
155. Falony, G., Armas, J. C., Mendoza, J. C. D., & Hernández, J. L. M. (2006). Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation. Food Technology & Biotechnology, 44(2).
156. Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K., & Chandrasekaran, M. (2011). Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnology, 28(6), 627-638.
157. Akhila, R., Kumar, D. S., & Nair, A. J. (2011). Isolation of a novel alkaline lipase producing fungus Aspergillus fumigatus MTCC 9657 from aged and crude rice bran oil and quantification by HPTLC. International journal of biological chemistry, 5(2), 116-126.
158. Maia, M. M. D., Heasley, A., De Morais, M. C., Melo, E. H. M., Morais Jr, M. A., Ledingham, W. M., & Lima Filho, J. L. (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource technology, 76(1), 23-27.
159. Okafor, J. I., & Gugnani, H. C. (1990). Lipase activity of Basidiobolus and Conidiobolus species. Mycoses, 33(2), 81-85.
160. Li, N., Zong, M. H., & Ma, D. (2009). Unexpected reversal of the regioselectivity in Thermomyces lanuginosus lipase-catalyzed acylation of floxuridine. Biotechnology letters, 31, 1241-1244.
161. Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K., & Chandrasekaran, M. (2011). Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnology, 28(6), 627-638.
162. Hasan, N. A., Nawahwi, M. Z., Yahya, N., & Othman, N. A. (2018). Identification and optimization of lipase producing bacteria from palm oil contaminated waste. Journal of Fundamental and Applied Sciences, 10(2S), 300-310.
163. Fojan, P., Jonson, P. H., Petersen, M. T., & Petersen, S. B. (2000). What distinguishes an esterase from a lipase: a novel structural approach. Biochimie, 82(11), 1033-1041.
164. Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in bioengineering and biotechnology, 5, 16.
165. Chaturvedi, M., Singh, M., Rishi, C. M., & Rahul, K. (2010). Isolation of lipase producing bacteria from oil contaminated soil for the production of lipase by solid state fermentation using coconut oil cake. International Journal of Biotechnology & Biochemistry, 6(4), 585-595.
166. Patil, K. J., Chopda, M. Z., & Mahajan, R. T. (2011). Lipase biodiversity. Indian Journal of Science and Technology, 4(8), 971-982.
167. Aristodemo, C., Francesco, B., Stefania, I., & Marengo, M. (2019). Effects of starch addition on the activity and specificity of food-grade lipases.
168. Tong, X., Busk, P. K., & Lange, L. (2016). Characterization of a new sn‐1, 3‐regioselective triacylglycerol lipase from Malbranchea cinnamomea. Biotechnology and Applied Biochemistry, 63(4), 471-478.
169. Veríssimo, L. A. A., Mól, P. C. G., Soares, W. C. L., Minim, V. P. R., Hespanhol, M. C., & Minim, L. A. (2018). Development of a bioreactor based on lipase entrapped in a monolithic cryogel for esterification and interesterification reactions. Revista Mexicana de Ingeniería Química, 17(1), 177-187.
170. Abreu Silveira, E., Moreno-Perez, S., Basso, A., Serban, S., Pestana Mamede, R., Tardioli, P. W., ... & Guisan, J. M. (2017). Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC biotechnology, 17(1), 1-13.
171. Rmili, F., Achouri, N., Smichi, N., Krayem, N., Bayoudh, A., Gargouri, Y., ... & Fendri, A. (2019). Purification and biochemical characterization of an organic solvent‐tolerant and detergent‐stable lipase from Staphylococcus capitis. Biotechnology Progress, 35(4), e2833.
172. Ekinci, A. P., Dinçer, B., Baltaş, N., & Adıgüzel, A. (2016). Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of enzyme inhibition and medicinal chemistry, 31(2), 325-331.
173. Melani, N. B., Tambourgi, E. B., & Silveira, E. (2020). Lipases: from production to applications. Separation & Purification Reviews, 49(2), 143-158.
174. Priyanka, P., Tan, Y., Kinsella, G. K., Henehan, G. T., & Ryan, B. J. (2019). Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnology letters, 41(2), 203-220.
175. Itoh, N., Iwata, C., & Toda, H. (2016). Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa. BMC plant biology, 16(1), 1-13.
176. Castro, L. F. C., Tocher, D. R., & Monroig, O. (2016). Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Progress in lipid research, 62, 25-40.
177. Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and biophysical research communications, 482(3), 419-425.
178. Utama, Q. D., Sitanggang, A. B., Adawiyah, D. R., & Hariyadi, P. (2019). Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured lipids–A review. Food Technology and Biotechnology, 57(3), 305.
179. Vafaei, N., Eskin, M. N., Rempel, C. B., Jones, P. J., & Scanlon, M. G. (2020). Interesterification of soybean oil with propylene glycol in supercritical carbon dioxide and analysis by NMR spectroscopy. Applied Biochemistry and Biotechnology, 191(3), 905-920.
180. Nurhasanah, S., Munarso, S. J., Wulandari, N., & Hariyadi, P. (2020). Physical Characteristics of Structured Lipid Synthesized by Lipase Catalyzed Interesterification of Coconut and Palm Oils. Pertanika Journal of Science & Technology, 28(1).
181. Brault, G., Shareck, F., Hurtubise, Y., Lépine, F., & Doucet, N. (2014). Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS One, 9(3), e91872.
182. Jiang, Y., & Loos, K. (2016). Enzymatic synthesis of biobased polyesters and polyamides. Polymers, 8(7), 243.
183. Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F., ... & Liu, T. (2014). Biotechnological preparation of biodiesel and its high-valued derivatives: A review. Applied Energy, 113, 1614-1631.
184. Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in biochemistry, 59, 1.
185. Eş, I., Vieira, J. D. G., & Amaral, A. C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied microbiology and biotechnology, 99(5), 2065-2082.
186. Nagar, M., Dwivedi, S. K., & Shrivastava, D. (2013). A review on industrial application in microbial lipases. International Journal of Pharmaceutical and Research Sciences, 2(4), 631-641.
187. Mane, P. R. A. J. A. K. T. A., & Tale, V. I. D. Y. A. (2015). Overview of microbial therapeutic enzymes. Int J Curr Microbiol App Sci, 4(4), 17-26.
188. Teixeira, L. G., Leonel, A. J., Aguilar, E. C., Batista, N. V., Alves, A. C., Coimbra, C. C., ... & Alvarez Leite, J. I. (2011). The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids in health and disease, 10(1), 1-15.
189. Doll, S., Paccaud, F., Bovet, P. A., Burnier, M., & Wietlisbach, V. (2002). Body mass index, abdominal adiposity and blood pressure: consistency of their association across developing and developed countries. International journal of obesity, 26(1), 48-57.
190. Bjerregaard, L. G., Jensen, B. W., Ängquist, L., Osler, M., Sørensen, T. I., & Baker, J. L. (2018). Change in overweight from childhood to early adulthood and risk of type 2 diabetes. New England Journal of Medicine.
191. Latino-Martel, P., Cottet, V., Druesne-Pecollo, N., Pierre, F. H., Touillaud, M., Touvier, M., ... & Ancellin, R. (2016). Alcoholic beverages, obesity, physical activity and other nutritional factors, and cancer risk: a review of the evidence. Critical reviews in oncology/hematology, 99, 308-323.
192. Bernstein, M. J. (1985). Lowering Blood Cholesterol to Prevent Heart-Disease. Jama-Journal of the American Medical Association, 253(14), 2080-2086.
193. Ravussin, E., & Swinburn, B. A. (1992). Pathophysiology of obesity. The Lancet, 340(8816), 404-408.
194. Ferreira, D. M. S., Castro, R. E., Machado, M. V., Evangelista, T., Silvestre, A., Costa, A., ... & Rodrigues, C. M. P. (2011). Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia, 54(7), 1788-1798.
195. Lei, P., Tian, S., Teng, C., Huang, L., Liu, X., Wang, J., ... & Shan, Y. (2019). Sulforaphane improves lipid metabolism by enhancing mitochondrial function and biogenesis in vivo and in vitro. Molecular nutrition & food research, 63(4), 1800795.
196. Connolly, H. M., Crary, J. L., McGoon, M. D., Hensrud, D. D., Edwards, B. S., Edwards, W. D., & Schaff, H. V. (1997). Valvular heart disease associated with fenfluramine–phentermine. New England Journal of Medicine, 337(9), 581-588.
197. Zou, Y., Li, J., Lu, C., Wang, J., Ge, J., Huang, Y., ... & Wang, Y. (2006). High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life sciences, 79(11), 1100-1107.
198. Park, H., Bae, S. H., Park, Y., Choi, H. S., & Suh, H. J. (2015). Lipase‐mediated lipid removal from propolis extract and its antiradical and antimicrobial activity. Journal of the Science of Food and Agriculture, 95(8), 1697-1705.
199. Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314.
200. Li, T., Owsley, E., Matozel, M., Hsu, P., Novak, C. M., & Chiang, J. Y. (2010). Transgenic expression of cholesterol 7α‐hydroxylase in the liver prevents high‐fat diet–induced obesity and insulin resistance in mice. Hepatology, 52(2), 678-690.
201. Schwartz, S. L. (2006). Diabetes and dyslipidaemia. Diabetes, obesity and metabolism, 8(4), 355-364.
202. Lowe, M. E. (2002). The triglyceride lipases of the pancreas. Journal of lipid research, 43(12), 2007-2016.
203. Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug discovery today, 12(19-20), 879-889.
204. Sánchez, J., Priego, T., Palou, M., Tobaruela, A., Palou, A., & Pico, C. (2008). Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology, 149(2), 733-740.
205. Mathus‐Vliegen, E. M. H., Van Ierland‐Van Leeuwen, M. L., & Terpstra, A. (2004). Lipase inhibition by orlistat: effects on gall‐bladder kinetics and cholecystokinin release in obesity. Alimentary pharmacology & therapeutics, 19(5), 601-611.
206. Dollinger, L. M., & Howell, A. R. (1998). A 2-methyleneoxetane analog of orlistat demonstrating inhibition of porcine pancreatic lipase. Bioorganic & medicinal chemistry letters, 8(8), 977-978.
207. Weber, C., Tam, Y. K., Schmidtke-Schrezenmeier, G., Jonkmann, J. H. G., & Van Brummelen, P. (1996). Effect of the lipase inhibitor orlistat on the pharmacokinetics of four different antihypertensive drugs in healthy volunteers. European journal of clinical pharmacology, 51(1), 87-90.
208. Jawed, A., Singh, G., Kohli, S., Sumera, A., Haque, S., Prasad, R., & Paul, D. (2019). Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany, 120, 25-32.
209. Takasu, S., Mutoh, M., Takahashi, M., & Nakagama, H. (2012). Lipoprotein lipase as a candidate target for cancer prevention/therapy. Biochemistry research international, 2012.
210. Das, S. K., & Hoefler, G. (2013). The role of triglyceride lipases in cancer associated cachexia. Trends in molecular medicine, 19(5), 292-301.
211. Staege, M. S., Hesse, M., & Max, D. (2010). Lipases and related molecules in cancer. Cancer Growth and Metastasis, 3, CGM-S2816.
212. Witztum, J. L., Gaudet, D., Freedman, S. D., Alexander, V. J., Digenio, A., Williams, K. R., ... & Bruckert, E. (2019). Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. New England Journal of Medicine, 381(6), 531-542.
213. Kanter, J. E., Shao, B., Kramer, F., Barnhart, S., Shimizu-Albergine, M., Vaisar, T., ... & Bornfeldt, K. E. (2019). Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. The Journal of clinical investigation, 129(10), 4165-4179.
214. Ramms, B., Patel, S., Nora, C., Pessentheiner, A. R., Chang, M. W., Green, C. R., ... & Gordts, P. L. (2019). ApoC-III ASO promotes tissue LPL activity in the absence of apoE-mediated TRL clearance. Journal of lipid research, 60(8), 1379-1395.
215. Ashraf, A. P., Miyashita, K., Nakajima, K., Murakami, M., Hegele, R. A., Ploug, M., ... & Beigneux, A. P. (2020). Intermittent chylomicronemia caused by intermittent GPIHBP1 autoantibodies. Journal of clinical lipidology, 14(2), 197-200.
216. Wolska, A., Lo, L., Sviridov, D. O., Pourmousa, M., Pryor, M., Ghosh, S. S., ... & Remaley, A. T. (2020). A dual apolipoprotein C-II mimetic–apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Science translational medicine, 12(528), eaaw7905.
217. Priyanka, P., Tan, Y., Kinsella, G. K., Henehan, G. T., & Ryan, B. J. (2019). Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnology letters, 41(2), 203-220.
218. Marchesini, G., Brizi, M., Bianchi, G., Tomassetti, S., Bugianesi, E., Lenzi, M., ... & Melchionda, N. (2001). Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes, 50(8), 1844-1850.
219. Belfort, R., Mandarino, L., Kashyap, S., Wirfel, K., Pratipanawatr, T., Berria, R., ... & Cusi, K. (2005). Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes, 54(6), 1640-1648.
220. Basque, J. R., & Ménard, D. (2000). Establishment of culture systems of human gastric epithelium for the study of pepsinogen and gastric lipase synthesis and secretion. Microscopy research and technique, 48(5), 293-302.
221. Aloulou, A., & Carriere, F. (2008). Gastric lipase: an extremophilic interfacial enzyme with medical applications. Cellular and Molecular Life Sciences, 65(6), 851.
222. Lowe, M. E. (1997). Molecular mechanisms of rat and human pancreatic triglyceride lipases. The Journal of nutrition, 127(4), 549-557
223. Lowe, M. E. (2002). The triglyceride lipases of the pancreas. Journal of lipid research, 43(12), 2007-2016.
224. Bharathi, D., & Rajalakshmi, G. (2019). Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, 22, 101368.
225. Kamat, S. S., Camara, K., Parsons, W. H., Chen, D. H., Dix, M. M., Bird, T. D., ... & Cravatt, B. F. (2015). Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nature chemical biology, 11(2), 164-171.
226. Chen, X., & Alonzo III, F. (2019). Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proceedings of the National Academy of Sciences, 116(9), 3764-3773.