THE EFFECT OF LOW DOSE NICOTINE ON WORKING MEMORY AND POSITIVE EMOTION IN PATIENTS WITH MILD COGNITIVE IMPAIRMENT

Main Article Content

Zeinab Samnia
Zhila Yousefi
Naveena JH
Imran Khan
Abbas Rouzbahani
Esmail Khodadadi

Keywords

Low dose nicotine, Working memory, Positive emotions, Mild cognitive impairment

Abstract

Background: The persons with Mild Cognitive Impairment are more likely to develop dementia. This condition can lead to permanent memory impairment and dementia if left untreated. So far, several non-pharmacological treatments have been used to prevent the progression of this disorder, but their effectiveness needs to be further investigated. The aim of this study was to determine the effectiveness of low dose nicotine on working memory and positive emotion in patients with mild cognitive impairment.


Methods: This is a quasi-experimental study with a control group. Fifty male patients referred to neurology clinics in Tabriz city were selected by convenience sampling method and randomly assigned to the control and experimental groups. Data collection tools included Wechsler Memory Scale (WISC-IV) and Positive and Negative Affect Schedule (PANAS). Data were analyzed using SPSS software ver. 24.


Results: The findings indicated that the mean scores of working memory and positive emotion in experimental group were not statistically significantly different from the control group before intervention (P>0.05). But after intervention the mean scores of working memory and positive emotion in experimental group were statistically significantly higher than the control group (P<0.05).


Conclusion: The study findings indicated that low dose nicotine enhances working memory and increases positive emotions in patients with mild cognitive impairment. Therefore, the findings of this study can be used in the treatment and rehabilitation of patients with mild cognitive disorders.

Abstract 546 | PDF Downloads 110

References

References:
1. Cuesta MJ, Moreno-Izco L, Ribeiro M, López-Ilundain JM, Lecumberri P, Cabada T, et al. Motor abnormalities and cognitive impairment in first-episode psychosis patients, their unaffected siblings and healthy controls. Schizophr Res. 2018;200:50-55. https://doi.org/10.1016/j.schres.2017.10.035
2. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018;100(2):463-75. https://doi.org/10.1016/j.neuron.2018.09.023
3. Sweller J. Working memory, long-term memory, and instructional design. J Appl Res Mem Cogn. 2016;5(4):360-367. https://doi.org/10.1016/j.jarmac.2015.12.002
4. Young JZ. The memory system of the brain: University of California Press; 2020. https://doi.org/10.1525/9780520346468
5. Cowan N. Working memory capacity: Classic edition: Routledge; 2016.
6. Morley, John E., M. Berg-Weger, and Janice Lundy. Nonpharmacological treatment of cognitive impairment. J Nutr Health Aging. 2018;22(6): 632-633.‏ https://doi.org/10.1007/s12603-018-1036-2
7. Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3-19. https://doi.org/10.1016/bs.irn.2015.07.001
8. Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacol. 2020;177:108256. https://doi.org/10.1016/j.neuropharm.2020.108256
9. Wei C, Han X, Weng D, Feng Q, Qi X, Li J, et al. Response dynamics of midbrain dopamine neurons and serotonin neurons to heroin, nicotine, cocaine, and MDMA. Cell Disco. 2018;4(1):1-16.
10. Newhouse PA, Potter A, Kelton M, Corwin J. Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry. 2001;49(3):268-278. https://doi.org/10.1016/s0006-3223(00)01069-6.
11. Robinson CD, Waters AJ, Kang N, Sofuoglu M. Neurocognitive function as a treatment target for tobacco use disorder. Curr Behav Neurosci Rep. 2017;4(1):10-20. https://doi.org/10.1007/s40473-017-0105-x
12. Valentine G, Sofuoglu M. Cognitive effects of nicotine: recent progress. Curr Neuropharmacol. 2018;16(4):403-414. https://doi.org/10.2174/1570159X15666171103152136
13. Bashir S, Alghamdi F, Alhussien A, Alohali M, Alatawi A, Almusned T, et al. Effect of smoking on cognitive functioning in young Saudi adults. Med Sci Monit Basic Res. 2017;23:31. https://doi.org/10.12659/MSMBR.902385
14. Kent PL. The Wechsler Memory Scale: A Guide for Clinicians and Researchers: Routledge; 2020.
15. Yadollahi S, Falsafinejad M, Borjali A, Farokhi N. Study of underlying structure of the WISC-IV using multidimensional scaling and factor analysis methods. J Appl Psychol. 2016;10(1):37.
16. Cornoldi C, Orsini A, Cianci L, Giofrè D, Pezzuti L. Intelligence and working memory control: Evidence from the WISC-IV administration to Italian children. Learn Individ Differ. 2013;26:9-14. https://doi.org/10.1016/j.lindif.2013.04.005
17. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063. https://doi.org/10.1037//0022-3514.54.6.1063
18. Mani A, Mehdipour Z, Ahmadzadeh L, Tahmasebi S, Khabir L, Mosalaei A. The Effectiveness of Group Acceptance and Commitment Psychotherapy on Psychological Well-being of Breast Cancer Patients in Shiraz, Iran. Middle East J Cancer. 2019;10(3):231-238. https://doi.org/10.30476/MEJC.2019.45316
19. Díaz-García A, González-Robles A, Mor S, Mira A, Quero S, García-Palacios A, et al. Positive and Negative Affect Schedule (PANAS): psychometric properties of the online Spanish version in a clinical sample with emotional disorders. BMC psychiatry. 2020;20(1):1-13.
20. Sutherland MT, Ray KL, Riedel MC, Yanes JA, Stein EA, Laird AR. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biol Psychiatry. 2015;78(10):711-720. https://doi.org/10.1016/j.biopsych.2014.12.021
21. Kutlu MG, Gould TJ. Nicotinic receptors, memory, and hippocampus. The neurobiology and genetics of nicotine and tobacco. Curr Top Behav Neurosci. 2015:137-163. https://doi.org/10.1007/978-3-319-13665-3_6
22. Jensen KP, DeVito EE, Herman AI, Valentine GW, Gelernter J, Sofuoglu M. A CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacol. 2015;40(12):2813-2821. https://doi.org/10.1038/npp.2015.131
23. Bombardi C, Delicata F, Tagliavia C, Pierucci M, Deidda G, Casarrubea M, et al. Acute and Chronic Nicotine Exposures Differentially Affect Central Serotonin 2A Receptor Function: Focus on the Lateral Habenula. Int J Mol Sci. 2020;21(5):1873. https://doi.org/10.3390/ijms21051873
24. Grus A, Hromatko I. Acute administration of nicotine does not enhance cognitive functions. Arh Hig Rada Toksikol. 2019;70(4):273-281. https://doi.org/10.2478/aiht-2019-70-3257
25. Grundey J, Amu R, Ambrus GG, Batsikadze G, Paulus W, Nitsche MA. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine. Psychopharmacol. 2015;232(14):2491-2501. https://doi.org/10.1007/s00213-015-3880-7
26. Hahn B, Shrieves ME, Olmstead CK, Yuille MB, Chiappelli JJ, Pereira EF, et al. Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine in healthy human subjects. Psychopharmacol. 2020;237(1):219-230. https://doi.org/10.1007/s00213-019-05363-4
27. Myers CS, Taylor RC, Moolchan ET, Heishman SJ. Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacol. 2008;33(3):588-598. https://doi.org/10.1038/sj.npp.1301425
28. Newhouse P, Kellar K, Aisen P, White H, Wesnes K, Coderre E, et al. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology. 2012;78(2):91-101. https://doi.org/10.1212/WNL.0b013e31823efcbb
29. Nop O, Senft Miller A, Culver H, Makarewicz J, Dumas JA. Nicotine and Cognition in Cognitively Normal Older Adults. Front Aging Neurosci. 2021;13:229. https://doi.org/10.3389/fnagi.2021.640674
30. Ge S, Tang X, Wei Z, Dune L, Liu T, Li J, et al. Smoking and cognitive function among middle-aged adults in China: Findings from the China health and retirement longitudinal study baseline survey. J Addict Nurs. 2020;31(3):E5-E12. https://doi.org/10.1097/JAN.0000000000000352
31. Alasmari F, Al-Rejaie SS, AlSharari SD, Sari Y. Targeting glutamate homeostasis for potential treatment of nicotine dependence. Brain Res Bull. 2016;121:1-8. https://doi.org/10.1016/j.brainresbull.2015.11.010
32. Flores-González LA, Gutiérrez-Ramírez JM, Sánchez-González LC, Reyes-Solis H, Toledo-Vázquez A, Pérez MG. Quantic analysis of the effect of nicotine on neurotransmitters. World J Pharm Res. 2017;6(4):317-326. https://doi.org/10.20959/wjpr20174-8243
33. Zhao M, Ma Y, Xin J, Cao C, Wang J. Detection of differential selection pressure and functional-specific sites in subunits of vertebrate neuronal nicotinic acetylcholine receptors. J Biomol Struct Dyn. 2021:1-10. https://doi.org/10.1080/07391102.2021.1982772
34. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699-729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
35. Levin ED. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem Pharmacol. 2013;86(8):1145-1152. https://doi.org/10.1016/j.bcp.2013.07.021
36. Van Goethem NP, Paes D, Puzzo D, Fedele E, Rebosio C, Gulisano W, et al. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal. 2019;62:109338. https://doi.org/10.1016/j.cellsig.2019.06.003
37. Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacol. 2010;210(4):453-469. https://doi.org/10.1007/s00213-010-1848-1
38. Posner MI, Rothbart MK. Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol. 2007;58:1-23. https://doi.org/10.1146/annurev.psych.58.110405.085516
39. Ettinger U, Faiola E, Kasparbauer A-M, Petrovsky N, Chan RC, Liepelt R, et al. Effects of nicotine on response inhibition and interference control. Psychopharmacol. 2017;234(7):1093-1111. https://doi.org/10.1007/s00213-017-4542-8
40. Stein EA, Pankiewicz J, Harsch HH, Cho J-K, Fuller SA, Hoffmann RG, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry. 1998;155(8):1009-1015. https://doi.org/10.1176/ajp.155.8.1009
41. Vossel S, Thiel CM, Fink GR. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects. Neuropsychopharmacol. 2008;33(4):731-738. https://doi.org/10.1038/sj.npp.1301469
42. Falcone M, Bernardo L, Ashare RL, Hamilton R, Faseyitan O, McKee SA, et al. Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul. 2016;9(2):191-196. https://doi.org/10.1016/j.brs.2015.10.004
43. Dondé C, Brunelin J, Mondino M, Cellard C, Rolland B, Haesebaert F. The effects of acute nicotine administration on cognitive and early sensory processes in schizophrenia: a systematic review. Neurosci Biobehav Rev. 2020;118:121-133 https://doi.org/10.1016/j.neubiorev.2020.07.035
44. McClernon FJ, Hiott FB, Westman EC, Rose JE, Levin ED. Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacol. 2006;189(1):125-133. https://doi.org/10.1007/s00213-006-0516-y
45. Trojak B, Meille V, Achab S, Lalanne L, Poquet H, Ponavoy E, et al. Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: a randomized controlled trial. Brain Stimul. 2015;8(6):1168-1174. https://doi.org/10.1016/j.brs.2015.06.004
46. Fernandes TP, Almeida NL, Silva GM, Santos NA. Nicotine gum enhances visual processing in healthy nonsmokers. Brain Imaging Behav. 2021;15(5):2593-2605. https://doi.org/10.1007/s11682-021-00461-4