Main Article Content

Zeinab Samnia
Zhila Yousefi
Naveena JH
Imran Khan
Abbas Rouzbahani
Esmail Khodadadi


Low dose nicotine, Working memory, Positive emotions, Mild cognitive impairment


Background: The persons with Mild Cognitive Impairment are more likely to develop dementia. This condition can lead to permanent memory impairment and dementia if left untreated. So far, several non-pharmacological treatments have been used to prevent the progression of this disorder, but their effectiveness needs to be further investigated. The aim of this study was to determine the effectiveness of low dose nicotine on working memory and positive emotion in patients with mild cognitive impairment.

Methods: This is a quasi-experimental study with a control group. Fifty male patients referred to neurology clinics in Tabriz city were selected by convenience sampling method and randomly assigned to the control and experimental groups. Data collection tools included Wechsler Memory Scale (WISC-IV) and Positive and Negative Affect Schedule (PANAS). Data were analyzed using SPSS software ver. 24.

Results: The findings indicated that the mean scores of working memory and positive emotion in experimental group were not statistically significantly different from the control group before intervention (P>0.05). But after intervention the mean scores of working memory and positive emotion in experimental group were statistically significantly higher than the control group (P<0.05).

Conclusion: The study findings indicated that low dose nicotine enhances working memory and increases positive emotions in patients with mild cognitive impairment. Therefore, the findings of this study can be used in the treatment and rehabilitation of patients with mild cognitive disorders.

Abstract 93 | PDF Downloads 10


1. Cuesta MJ, Moreno-Izco L, Ribeiro M, López-Ilundain JM, Lecumberri P, Cabada T, et al. Motor abnormalities and cognitive impairment in first-episode psychosis patients, their unaffected siblings and healthy controls. Schizophr Res. 2018;200:50-55.
2. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018;100(2):463-75.
3. Sweller J. Working memory, long-term memory, and instructional design. J Appl Res Mem Cogn. 2016;5(4):360-367.
4. Young JZ. The memory system of the brain: University of California Press; 2020.
5. Cowan N. Working memory capacity: Classic edition: Routledge; 2016.
6. Morley, John E., M. Berg-Weger, and Janice Lundy. Nonpharmacological treatment of cognitive impairment. J Nutr Health Aging. 2018;22(6): 632-633.‏
7. Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3-19.
8. Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacol. 2020;177:108256.
9. Wei C, Han X, Weng D, Feng Q, Qi X, Li J, et al. Response dynamics of midbrain dopamine neurons and serotonin neurons to heroin, nicotine, cocaine, and MDMA. Cell Disco. 2018;4(1):1-16.
10. Newhouse PA, Potter A, Kelton M, Corwin J. Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry. 2001;49(3):268-278.
11. Robinson CD, Waters AJ, Kang N, Sofuoglu M. Neurocognitive function as a treatment target for tobacco use disorder. Curr Behav Neurosci Rep. 2017;4(1):10-20.
12. Valentine G, Sofuoglu M. Cognitive effects of nicotine: recent progress. Curr Neuropharmacol. 2018;16(4):403-414.
13. Bashir S, Alghamdi F, Alhussien A, Alohali M, Alatawi A, Almusned T, et al. Effect of smoking on cognitive functioning in young Saudi adults. Med Sci Monit Basic Res. 2017;23:31.
14. Kent PL. The Wechsler Memory Scale: A Guide for Clinicians and Researchers: Routledge; 2020.
15. Yadollahi S, Falsafinejad M, Borjali A, Farokhi N. Study of underlying structure of the WISC-IV using multidimensional scaling and factor analysis methods. J Appl Psychol. 2016;10(1):37.
16. Cornoldi C, Orsini A, Cianci L, Giofrè D, Pezzuti L. Intelligence and working memory control: Evidence from the WISC-IV administration to Italian children. Learn Individ Differ. 2013;26:9-14.
17. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063.
18. Mani A, Mehdipour Z, Ahmadzadeh L, Tahmasebi S, Khabir L, Mosalaei A. The Effectiveness of Group Acceptance and Commitment Psychotherapy on Psychological Well-being of Breast Cancer Patients in Shiraz, Iran. Middle East J Cancer. 2019;10(3):231-238.
19. Díaz-García A, González-Robles A, Mor S, Mira A, Quero S, García-Palacios A, et al. Positive and Negative Affect Schedule (PANAS): psychometric properties of the online Spanish version in a clinical sample with emotional disorders. BMC psychiatry. 2020;20(1):1-13.
20. Sutherland MT, Ray KL, Riedel MC, Yanes JA, Stein EA, Laird AR. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biol Psychiatry. 2015;78(10):711-720.
21. Kutlu MG, Gould TJ. Nicotinic receptors, memory, and hippocampus. The neurobiology and genetics of nicotine and tobacco. Curr Top Behav Neurosci. 2015:137-163.
22. Jensen KP, DeVito EE, Herman AI, Valentine GW, Gelernter J, Sofuoglu M. A CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacol. 2015;40(12):2813-2821.
23. Bombardi C, Delicata F, Tagliavia C, Pierucci M, Deidda G, Casarrubea M, et al. Acute and Chronic Nicotine Exposures Differentially Affect Central Serotonin 2A Receptor Function: Focus on the Lateral Habenula. Int J Mol Sci. 2020;21(5):1873.
24. Grus A, Hromatko I. Acute administration of nicotine does not enhance cognitive functions. Arh Hig Rada Toksikol. 2019;70(4):273-281.
25. Grundey J, Amu R, Ambrus GG, Batsikadze G, Paulus W, Nitsche MA. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine. Psychopharmacol. 2015;232(14):2491-2501.
26. Hahn B, Shrieves ME, Olmstead CK, Yuille MB, Chiappelli JJ, Pereira EF, et al. Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine in healthy human subjects. Psychopharmacol. 2020;237(1):219-230.
27. Myers CS, Taylor RC, Moolchan ET, Heishman SJ. Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacol. 2008;33(3):588-598.
28. Newhouse P, Kellar K, Aisen P, White H, Wesnes K, Coderre E, et al. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology. 2012;78(2):91-101.
29. Nop O, Senft Miller A, Culver H, Makarewicz J, Dumas JA. Nicotine and Cognition in Cognitively Normal Older Adults. Front Aging Neurosci. 2021;13:229.
30. Ge S, Tang X, Wei Z, Dune L, Liu T, Li J, et al. Smoking and cognitive function among middle-aged adults in China: Findings from the China health and retirement longitudinal study baseline survey. J Addict Nurs. 2020;31(3):E5-E12.
31. Alasmari F, Al-Rejaie SS, AlSharari SD, Sari Y. Targeting glutamate homeostasis for potential treatment of nicotine dependence. Brain Res Bull. 2016;121:1-8.
32. Flores-González LA, Gutiérrez-Ramírez JM, Sánchez-González LC, Reyes-Solis H, Toledo-Vázquez A, Pérez MG. Quantic analysis of the effect of nicotine on neurotransmitters. World J Pharm Res. 2017;6(4):317-326.
33. Zhao M, Ma Y, Xin J, Cao C, Wang J. Detection of differential selection pressure and functional-specific sites in subunits of vertebrate neuronal nicotinic acetylcholine receptors. J Biomol Struct Dyn. 2021:1-10.
34. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699-729.
35. Levin ED. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem Pharmacol. 2013;86(8):1145-1152.
36. Van Goethem NP, Paes D, Puzzo D, Fedele E, Rebosio C, Gulisano W, et al. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal. 2019;62:109338.
37. Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacol. 2010;210(4):453-469.
38. Posner MI, Rothbart MK. Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol. 2007;58:1-23.
39. Ettinger U, Faiola E, Kasparbauer A-M, Petrovsky N, Chan RC, Liepelt R, et al. Effects of nicotine on response inhibition and interference control. Psychopharmacol. 2017;234(7):1093-1111.
40. Stein EA, Pankiewicz J, Harsch HH, Cho J-K, Fuller SA, Hoffmann RG, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry. 1998;155(8):1009-1015.
41. Vossel S, Thiel CM, Fink GR. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects. Neuropsychopharmacol. 2008;33(4):731-738.
42. Falcone M, Bernardo L, Ashare RL, Hamilton R, Faseyitan O, McKee SA, et al. Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul. 2016;9(2):191-196.
43. Dondé C, Brunelin J, Mondino M, Cellard C, Rolland B, Haesebaert F. The effects of acute nicotine administration on cognitive and early sensory processes in schizophrenia: a systematic review. Neurosci Biobehav Rev. 2020;118:121-133
44. McClernon FJ, Hiott FB, Westman EC, Rose JE, Levin ED. Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacol. 2006;189(1):125-133.
45. Trojak B, Meille V, Achab S, Lalanne L, Poquet H, Ponavoy E, et al. Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: a randomized controlled trial. Brain Stimul. 2015;8(6):1168-1174.
46. Fernandes TP, Almeida NL, Silva GM, Santos NA. Nicotine gum enhances visual processing in healthy nonsmokers. Brain Imaging Behav. 2021;15(5):2593-2605.