A systematic review of Antimicrobial peptides and their current applications

Main Article Content

Fadia Falah Hassan
Rana Alaa Al-Aamery
Shaymaa Sabah Mahdi


Antibiotics, Antioxidant, Antifungal, Bacteria


In present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacteria, fungi, and algae in higher eucaryotic animals offer novel possibilities to identify potential lead compounds for treating a variety of diseases. The antimicrobial activity, various properties, mechanisms, and applications of AMPs are the focus of this systematic study.

Abstract 512 | pdf Downloads 331


1. Fleming, A. (2001) On the antibacterial action of cultures of a penicillium, with Special reference to their use in the isolation of B. influenzae. Bulletin of the World Health Organization, 79, 780 – 790.
2. Brown, K. (2004) The history of penicillin from discovery to the drive to production. Pharmaceutical Historian, 34, 37 – 43.
3. Zaffiri, L., Gardner, J., and Toledo- Pereyra, L.H. ( 2012 ) History of antibiotics. From Salvarsan to Cephalosporins. Journal of Investigative Surgery, 25, 67 – 77.
4. Bentley, R. (2009) Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). Journal of Industrial Microbiology & Biotechnology, 36, 775 – 786.
5. Davies, J. ( 2006 ) Where have all the antibiotics gone? The Canadian Journal of Infectious Diseases & Medical Microbiology, 17, 287 – 290.
6. Katz, M.L., Mueller, L.V., Polyakov, M., and Weinstock, S.F. (2006) Where have all the antibiotic patents gone? Nature Biotechnology, 24, 1529 – 1531.
7. Hirsch, J.G. (1956) Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. The Journal of Experimental Medicine, 103, 589 – 611.
8. Zeya, H.I. and Spitznagel, J.K. (1966) Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. Journal of Bacteriology, 91 , 755 – 762 .
9. Bagnicka, E., Jozwik , A. , Strzalkowska , N. , Krzyzewski, J. , and Zwierzchowski, L. ( 2011 ) Antimicrobial peptides – outline of the history of studies and mode of action . Medycyna Weterynaryjna , 67 , 444 – 448 .
10. Kiss, G. and Michl, H. (1962) Uber das Giftsekret der Gelbbauchunke, Bombina variegata L. Toxicon, 1, 33 – 34.
11. Hancock, R. E., & Chapple, D. S. (1999). Peptide antibiotics. Antimicrobial agents and chemotherapy, 43(6), 1317–1323. https://doi.org/10.1128/AAC.43.6.1317
12. Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of microbiology, 167(2-3), 67–77.
13. Hancock R. E. (2001). Cationic peptides: effectors in innate immunity and novel antimicrobials. The Lancet. Infectious diseases, 1(3), 156–164. https://doi.org/10.1016/S1473-3099(01)00092-5
14. Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of microbiology, 167(2-3), 67–77.
15. Brogden K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology, 3(3), 238–250. https://doi.org/10.1038/nrmicro1098.
16. Kamysz, W., Okrój, M., & Łukasiak, J. (2003). Novel properties of antimicrobial peptides. Acta biochimica Polonica, 50(2), 461–469.
17. Powers, J. P., & Hancock, R. E. (2003). The relationship between peptide structure andantibacterial activity. Peptides, 24(11), 1681–1691. https://doi.org/10.1016/j.peptides.2003.08.023
18. Bulet, P., Stöcklin, R., & Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological reviews, 198, 169–184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
19. Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 19(3), 491–511. https://doi.org/10.1128/CMR.00056-05.
20. Harris, F., Dennison, S. R., & Phoenix, D. A. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Current protein & peptide science, 10(6), 585–606. https://doi.org/10.2174/138920309789630589
21. Groenink, J., Walgreen-Weterings, E., van 't Hof, W., Veerman, E. C., & Nieuw Amerongen, A. V. (1999). Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS microbiology letters, 179(2), 217–222. https://doi.org/10.1111/j.1574-6968.1999.tb08730.x
22. Barale, S. S., Ghane, S. G., & Sonawane, K. D. (2022). Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express, 12(1), 7. https://doi.org/10.1186/s13568-022-01348-3.
23. Bradshaw J. (2003). Cationic antimicrobial peptides : issues for potential clinical use. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy, 17(4), 233–240. https://doi.org/10.2165/00063030-200317040-00002
24. Riedl, S., Zweytick, D., & Lohner, K. (2011). Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chemistry and physics of lipids, 164(8), 766–781. https://doi.org/10.1016/j.chemphyslip.2011.09.004.
25. Huang, Y., Huang, J., & Chen, Y. (2010). Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein & cell, 1(2), 143–152. https://doi.org/10.1007/s13238-010-0004-3.
26. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 55(1), 27–55. https://doi.org/10.1124/pr.55.1.2
27. Matsuzaki, K. (2009). Control of cell selectivity of antimicrobial peptides. Biochim. Biophys.Acta 1788, 1687–1692.doi: 10.1016/j.bbamem.2008.09.013.
28. Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat.Rev.Microbiol. 3, 238–250.doi:10.1038/nrmicro1098.
29. Lohner, K., and Prenner,E.J.(1999).Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim. Biophys.Acta 1462, 141–156.DOI: 10.1016/S0005-2736(99)00204-7.
30. de Kruijff,B.,Van Dam,V. ,and Breukink ,E.(2008).Lipid II:a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fatty Acids 79, 117–121.doi: 10.1016/j.plefa.2008.09.020.
31. Zanetti M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. Journal of leukocyte biology, 75(1), 39–48. https://doi.org/10.1189/jlb.0403147.
32. Kaneider, N. C., Djanani, A., & Wiedermann, C. J. (2007). Heparan sulfate proteoglycan-involving immunomodulation by cathelicidin antimicrobial peptides LL-37 and PR-39. The Scientific World Journal, 7, 1832–1838. https://doi.org/10.1100/tsw.2007.285.
33. Boman, H. G., Agerberth, B., & Boman, A. (1993). Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infection and immunity, 61(7), 2978–2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993.
34. Chan, Y.R.,Zanetti ,M. , Gennaro,R. , and Gallo, R.L.(2001).Anti-microbial activityandcellbindingarecontrolledbysequencedeterminantsintheanti- microbialpeptidePR-39. J. Invest. Dermatol. 116, 230–235.doi:10.1046/j.1523- 1747.2001.01231.x.
35. Bals, R., and Wilson, J.M.(2003).Cathelicidins –a family of multifunctional antimicrobial peptides. Cell.Mol.LifeSci. 60, 711–720.doi:10.1007/s00018-003- 2186-9.
36. Sarwar A, Nadeem M, Imran M, Iqbal M (2018) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13.
37. Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104(6):1675–1684.
38. Waghmare SR, Randive SA, Jadhav DB, Nadaf NH, Parulekar RS, Sonawane KD (2019). Production of novel antimicrobial protein from Bacillus licheniformis strain JS and its application against antibiotic-resistant pathogens. J Proteins Proteom 10(1):17–22.
39. Pergande, M. R., & Cologna, S. M. (2017). Isoelectric Point Separations of Peptides and Proteins. Proteomes, 5(1), 4. https://doi.org/10.3390/proteomes5010004.
40. Dhanarajan G, Rangarajan V, Sen R (2015) Dual gradient macroporous resin column chromatography for concurrent separation a purification on of three families of marine bacterial lipopeptides cell free broth. Sep Purif Technol 143:72–79.
41. Zasloff M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America, 84(15), 5449–5453. https://doi.org/10.1073/pnas.84.15.5449.
42. Rozek, A., Powers, J. P., Friedrich, C. L., & Hancock, R. E. (2003). Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry, 42(48), 14130–14138. https://doi.org/10.1021/bi035643g.
43. Lee, I. H., Cho, Y., & Lehrer, R. I. (1997). Effects of pH and salinity on the antimicrobial properties of clavanins. Infection and immunity, 65(7), 2898–2903. https://doi.org/10.1128/iai.65.7.2898-2903.1997
44. John, H., Maronde, E., Forssmann, W. G., Meyer, M., & Adermann, K. (2008). N-terminal acetylation protects glucagon-like peptide GLP-1-(7-34)-amide from DPP-IV-mediated degradation retaining cAMP- and insulin-releasing capacity. European journal of medical research, 13(2), 73–78.
45. Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology, 24(12), 1551–1557. https://doi.org/10.1038/nbt1267.
46. McPhee, J. B., Scott, M. G., & Hancock, R. E. (2005). Design of host defence peptides for antimicrobial and immunity enhancing activities. Combinatorial chemistry & high throughput screening, 8(3), 257–272. https://doi.org/10.2174/1386207053764558
47. Khaksa, G., D'Souza, R., Lewis, S., & Udupa, N. (2000). Pharmacokinetic study of niosome encapsulated insulin. Indian journal of experimental biology, 38(9), 901–905.
48. Samad, A., Sultana, Y., & Aqil, M. (2007). Liposomal drug delivery systems: an update review. Current drug delivery, 4(4), 297–305. https://doi.org/10.2174/156720107782151269.
49. Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779.
50. Khan, I., and Oh, D.-H. (2016). Integration of nisin into nanoparticles for application in foods. Innovat. Food Sci. Emerg. Technol. 34, 376–384. doi: 10.1016/j.ifset.2015.12.013.
51. Santos, J. C. P., Sousa, R. C. S., Otoni, C. G., Moraes, A. R. F., Souza, V. G. L., Medeiros, E. A. A., et al. (2018). Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innovat. Food Sci. Emerg. Technol. 48, 179–194. doi: 10.1016/j.ifset.2018.06.008.
52. Liu, Z., Zeng, M., Dong, S., Xu, J., Song, H., and Zhao, Y. (2007). Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol. Technol. 46, 95–98. doi: 10.1016/j.postharvbio.2007.03.013.
53. Liu, S., Wang, W., Deng, L., Ming, J., Yao, S., and Zeng, K. (2019). Control of sour rot in citrus fruit by three insect antimicrobial peptides. Postharvest Biol. Technol. 149, 200–208. doi: 10.1016/j.postharvbio.2018.11.025.
54. Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779.