Biochemical studies on antibiotic production from Streptomyces griseus

Main Article Content

Talib Saleh Al-Rubaye
Bayader Abdel Mohsen
Shams Ahmed Subhi
Mohsen Hashem Risan

Keywords

Streptomyces griseus, antibiotics, Biochemical studies

Abstract

The present study was aimed for identify Streptomyces griseus by biochemical tests. All Streptomyces spp. isolates (MH1, MH7, MH3, MH17, MH25) were screened for their antibacterial activity using scross-streak technique against Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus). Screening was performed by agar-well diffusion method and growth inhibition zones were measured in millimeters for each of the Streptomyces spp. isolates MH1, MH7, MH3, MH25. Tested isolates have shown potent in vitro antibacterial activities against all tested pathogens. The highest activities were shown by isolate MH7 against Staphylococcus aureus (21 mm), Pseudomonas aeruginosa (17.8 mm), Escherichia coli (22.5 mm). Streptomyces spp isolates (MH1, MH7, MH3, MH25) were selected for biochemical studies. All isolates hydrolyzed starch. All isolates produced Catalase, Gelatinase, Protease, Urease, Amylase, Cellulase, Chitinase and Lipase. All Streptomyces spp. isolates have ability to reduce nitrate, Tyrosine degradation and Casein hydrolysis. Hydrogen sulphide (H2S) production, Oxidase production, Indole production and Melanine reaction were studied for Streptomyces spp. isolates(MH1, MH7, MH3, MH25). Most of the isolates were not H2S producer, Oxidase, Indole and Melanine reaction except one isolate (MH3). All Streptomyces spp. isolates could Citrate utilization and Pectin degradation except MH7. Streptomyces spp. isolates 4 isolate utilizes eight carbon sources (Carbohydrates utilization)
such as the Glucose, Galactose, Fructose, Sucrose, Xylose, Maltose, Lactose and Mannitol). Results of Streptomyces spp. isolates by Utilization of nitrogen (amino acid) sources (L- arginine ,L-isoleucine, Lcysteine, L-glycine, L-tyrosine and L-alanine). Four Streptomyces spp. isolates were selected, characterized based and identified by biochemical examination according to Bergey’s Manual of determinative bacteriology. The bacteria was described to genus Streptomyces and species griseus. Given 4 isolates are presumptively the same or similar species (e.g., Streptomyces griseus). All isolates to have possessed similar biochemical tests results as the ones that were Streptomyces griseus. 

Abstract 613 | pdf Downloads 298

References

1. Al-Ansari M. ; Al kubaisi N.; Vijayaragavan P. ; Murugan K. (2019). Antimicrobial potential of Streptomyces sp. to the Gram positive and Gram
negative pathogens. Journal of Infection and Public Health 12 (86): 1–866.
2. Al-Rubaye, Talib Saleh; Mohsen Hashim Risan; Dalal Al-Rubaye (2020). Gas chromatographymass- spectroscopy analysis of bioactive compounds from Streptomyces spp. isolated from Tigris river sediments in Baghdad city, Journal of Biotechnology Research Center Vol. 14 No.1
3. Al-Rubaye TS, Risan MH, Al-Rubaye D, Radi OR. (2018a). Characterization of marine Streptomyces spp. bacterial isolates from Tigris river sediments in Baghdad city with Lc-ms and 1 HNMR, Journal of Pharmacognosy and Phytochemistry.; 7(5):2053-2060.
4. Al-Rubaye T, Risan MH, Al-Rubaye D, Radi OR. (2018b). Identification and In vitro antimicrobial activities of Marine Streptomyces spp. Bacteria
from Tigris River Sediments in Baghdad City. World Journal of Pharmaceutical and Life Sciences.; 4(10):120-134.
5. AL-Samarraie, M. Q., Omar, M. K., Yaseen, A. H., & Mahmood, M. I. (2019). The wide spread of the gene haeomolysin (Hly) and the adhesion
factor (Sfa) in the E. coli isolated from UTI. Journal of Pharmaceutical Sciences and Research, 11(4), 1298-1303.
6. Amano, S; S. Miyadoh; T. Shomura. (2008). Streptomyces griseus M-1027". Digital Atlas of Actinomycetes. Retrieved -12-02.
7. Amin SM, Risan MH, Abdulmohimin N. (2016). Antimicrobial and Antioxidant Activities of Biologically Active Extract from Locally Isolated Actinomycetes in Garmian Area, J Garmian University.; 1(10):625-639.
8. Anderson AS, Wellington EMH. (2001). The taxonomy of Streptomyces and related genera. International Journal of Systematic and Evolutionary Microbiology,; 51:797-814.
9. Barka, E.A.; Vatsa, P.; Sanchez, L.; GaveauVaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. (2016).
Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80, 1–43.
10. Berdy, J. (1995). Are actinomycetes exhausted as source of secondary metabolites? In Proceedings of the 9th International Symposium on the
Biology of Actinomycetes ed. V.G. Debabov, Y.V. Dudnik and V.N. Danilenko pp. 13– 34. Moscow: All-Russia Scientific Research Institute for Genetics and Selection of Industrial Microorganisms.
11. Bull, A.T. and J.E. Stach, (2007). Marine actinobacteria: New opportunities fornatural product search and discovery. Trend Microbial.
15:49-499.
12. Challis, G.L.; Hopwood, D.A. (2003). Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA, 100, 14555–14561.
13. Collins RA, et al. (1995) A subunit interface mutant of yeast pyruvate kinase requires the allosteric activator fructose 1,6-bisphosphate for
activity. Biochem J 310 ( Pt 1):117-23
14. Cowan ST. (1974). Cowan and Steels Manual for the Identification Of Medical Bacteria, second ed. Cambridge, Univ. Press.
15. Elwan SH, El-Nagar MR, Ammar MS. (1977). Characteristics of Lipase(s) in the growth filtrate dialysate of Bacillus stearo thermophilus grown
at 55-C using a tributryin- cup plate assay. Bull. Fac. Sci. Riyadh Univ.; 8:105– 119.
16. Embley T, Stackebrandt E. (1994). The molecular phylogency and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289.
17. Espinoza LE, Baines ALD, Lowe KL. (2013). Biochemical, nutrient and inhibitory characteristics of Streptomyces cultured from a hypersaline estuary, the laguna Madre (Texas). OnLine Journal of Biological Sciences.;13(1):18.
18. Gillies RR, Dodds TC. (1984). Bacteriology Illustrated 5th edition, Churchill Livingstone., 122-132.
19. Goodfellow, M. and Williams, S.T. (1983). Ecology of Actinomycetes. Annu Rev Microbiol. 37:189-216.
20. Gordon RE, Barnett DA, Handerhan JE, Pang CH. (1974). Nocardia coeliaca, Nocardia autotrophica and nocardin strain. Int J Syst Evol
Microbiol.; 24:54-63.
21. Gotoh T, Nakahara K, Iwami M, Aoki H, Ikmanaka H (1982). Studies on a new immuno active peptide. Marine Drugs. FK. 156.
22. Lechevalier H, Lechevalier A. (1967). Biology of actinomycetes, Ann Rev Microbiol,; 21:71-100.
23. Liu, Z., Y. Shi, Y. Zhang, Z. Zhou and Z. Lu et al., (2005). Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and
related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov. Int. J. Syst. Evol. Microbiol., 55: 1605-1610.
24. Locci R. (1989). Streptomyces and related Genera. Bergey' s Manual of Systematic Bacteriology. Williams & Wilkins Company, Baltimore, 4: 2451-2508
25. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. (2000). Practical Streptomyces genetics. Norwich, England: The John Innes
Foundation.
26. Kumar P, Preetam RJ, Duraipandiyan V, Ignacimuthu S. (2012). Antibacterial activity of some actinomycetes from Tamil Nadu, India. Asian Pac J Trop Biomed.; 2(12):936-943.
27. Madigan, M. and Martinko, J. (2005). Brock Biology of Microorganisms (11thed.). Prentice Hall.
28. Moncheva, P.; Tishkov, S.; Dimitrova, N.; Chipera, V.; Nikolova, S. A. and Bogatzevska, N. (2002). Characteristics of soil Actinomycetes from Antarctica. J of cult coll. 3:3 – 14.
29. Murray PR, Baroon EJ, Pfaller MA, Tenover FC, Yolke RH. Editors. (1995). Manual ofclinical microbiology. 6th ed. Washington DC: American
Society for Microbiology,.
30. Nitsch B, Kutzner HJ (1969). Decomposition of oxalic acid and other organic acid by Streptomyces as a taxanomic acid. Zeitschift tar Alleme. Microbiol. 9: 613 – 632.
31. Oskay M, TA Usame, Azeri C. (2004). Antibacterial activity of some actinomycetesisolated from farmin soils of Turkey, Afr. J. Biotechnol,; 3(9):441-446.
32. Qasim B. and Risan MH. (2017). Anti-tumor and Antimicrobial Activity of Antibiotic Produced by Streptomyces spp, World Journal of Pharmaceutical Research,; 6(4):116-128.
33. Paradkar, A.S., Mosher, R.H., Anders, C., Griffin, A., Griffin, J., Hughes, C., Greaves, P., Barton, B. and Jensen, S.E. (2001). Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. App Env Microbiol. 67: 2292- 2297.
34. Ram L. (2014). Optimization of Medium for the Production of Streptomycin By Streptomyces griseus, International Journal of Pharmaceutical
Science Invention,3:11-1-8
35. Risan MH, Amin SM, Abdulmohimin N. Production, Partial Purification and Antitumor Properties of Bioactive Compounds from Locally
Isolated Actinomycetes (KH14), Iraqi Journal of Biotechnology, 2016; 15(3):51-64.
36.Olano, C.; Mendez, C. and Salas, J. A. (2009). Antitumor Compounds from MarineActinomycetes. Marine Drugs, 7: 210-248.
37. Risan M. H, Amin S. M, Abdulmohimin N. (2016). Production, Partial Purification and Antitumor Properties of Bioactive Compounds from Locally Isolated Actinomycetes (KH14), Iraqi Journal of Biotechnology, 15(3):51- 64.
38. Risan M. H. ; Qasim B ; Abdel-jabbar B ; Muhsin A. H. (2017). Identification Active Compounds of Bacteria Streptomyces Using HighPerformance Liquid Chromatography, World Journal of Pharmaceutical and Life Sciences, 3(6):91-97.
39. Risan M. H, Taemor S. H, Muhsin A. H, Saja M Hafied, Sarah H Ghayyib, Zahraa H Neama. (2018). Activity of Lactobacillus acidophilus, L.
Planetarium, Streptomyces and Saccharomyces cerevisiae with extracts of date palm and dried shell of pomegranate to reduce aflatoxin M1 in Iraq, World Journal of Pharmaceutical and life sciences.; 4(6):119-13.
40. Risan M. H, Rusul J, Subhi S. A. (2019). Isolation, characterization and antibacterial activity of a Rare Actinomycete: Saccharopolyspora sp. In Iraq. East African Scholars Journal of Biotechnology and Genetics.; 1(4):60-49.
41. Rowbotham T. J. and Cross, T (1977). Ecology of Rhodococcus coprophilus and Associated Actinornycetes in Fresh Water and Agricultural Habitats, Journal of General Microbiology, 100, 231-240
42. Shirling, E. B. and Gottlieb, D. (1966) Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology 16, 313– 340.
43. Sottorff I.; Jutta Wiese ; Matthias Lipfert ; Nils Preußke ; Frank D. Sönnichsen and Johannes F. Imhoff (2019). Different Secondary Metabolite
Profiles of Phylogenetically almost Identical Streptomyces griseus Strains Originating from Geographically Remote Locations. Microorganisms: 7, 166.
44. Stackebrandt, E.; Rainey, F. A.; Ward-Rainey, N. L.(1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov., Int. J SystBacteriol., 47:479–491.
45. Weber, T., Welzel, K., Pelzer, S., Vente, A. and Wohlleben, W. (2003). Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol. 106: 221-232.