ECTOINE FROM HALOMONAS DAQINGENSIS DSH-3: CYTOTOXICITY AND PROTECTIVE POTENTIAL

Main Article Content

Dr. Shilanjali Bhalerao
Dr. Sudarshan Ashok
Dr. Dayanand Agsar
Dr. Gangagni Rao Anupoju
Dr. Kumaraguru Thenkrishan

Keywords

ectoine, Halomonas daqingensis, cytotoxicity, HaCaT, B16-F10, antioxidant, melanin inhibition, skin lightening, MTT assay, LPS stress

Abstract

: Ectoine is a protective solute synthesized by extremophilic bacteria and is gaining attention for its potential use in dermatology and cosmetics due to its ability to safeguard cells from stress.


Objectives: This study investigated the cytotoxic and protective effects of ectoine extracted from Halomonas daqingensis strain DSH-3 on human keratinocytes (HaCaT) and melanoma cells (B16-F10).


Methods: Ectoine was extracted and evaluated in vitro. Cytotoxicity was determined using the MTT assay, while antioxidant activity was assessed by measuring GSH-Px and SOD levels under LPS-induced oxidative stress. Skin-lightening potential was examined through mushroom tyrosinase inhibition and UV-induced melanin synthesis assays.


Results: The MTT assay demonstrated a dose-dependent cytotoxicity profile, with cell viability remaining above 99% at the lowest tested concentration (7.8 µg/mL) but declining at higher doses. Antioxidant assays showed a significant increase in GSH-Px and SOD activity, confirming the cytoprotective properties of ectoine. Although the compound displayed limited mushroom tyrosinase inhibition (IC₅₀ > 1000 µg/mL), it effectively reduced UV-induced melanin synthesis in keratinocytes by 51.02% at 500 µg/mL.


Conclusion: Ectoine from H. daqingensis DSH-3 exhibits strong antioxidant and cytoprotective activities with promising applications in managing oxidative stress and hyperpigmentation. However, its role as a direct tyrosinase inhibitor appears limited.

Abstract 16 | PDF Downloads 5

References

1. Arakawa, T., & Timasheff, S. N. (1985). The stabilization of proteins by osmolytes. Biophysical Journal, 47(3), 411–414.
2. Buommino, E., Baroni, A., Russo, R., Alfano, R., & Gravina, A. G. (2021). Ectoine in dermatology: A review. International Journal of Molecular Sciences, 22(12), 6595. https://doi.org/10.3390/ijms22126595
3. Galinski, E. A., Pfeiffer, H. P., & Trüper, H. G. (1985). 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid—a novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. European Journal of Biochemistry, 149(1), 135–139.
4. Graf, R., Anzali, S., Buenger, J., Pfluecker, F., & Driller, H. (2008). The multifunctional role of ectoine as a natural cell protectant. Clinical Dermatology, 26(4), 326–333.
5. Kunte, H. J., Trüper, H. G., & Galinski, E. A. (2014). Ectoine: A compatible solute with outstanding potential for biotechnological applications. Extremophiles, 18(3), 611–630.
6. Lee, S. Y., Jeong, S. H., Choi, Y. J., & Kim, M. J. (2019). Ectoine suppresses UV-induced melanogenesis in human melanocytes via antioxidant activity. Cosmetics, 6(1), 17.
7. Lentzen, G., & Schwarz, T. (2006). Extremolytes: Natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology, 72(4), 623–634.
8. Liu, C. M., Ma, J. Q., & Sun, Y. Z. (2011). Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environmental Toxicology and Pharmacology, 31(2), 202–209.
9. Masuda, T., Yamashita, D., Takeda, Y., & Yonemori, S. (2005). Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Rhizophora stylosa. Bioscience, Biotechnology, and Biochemistry, 69(1), 197–201. https://doi.org/10.1271/bbb.69.197
10. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
11. Parvez, S., Kang, M., Chung, H. S., Bae, H., & Cho, C. (2006). Survey and mechanism of skin depigmenting and lightening agents. Phytotherapy Research, 20(11), 921–934.
12. Pastor, J. M., Salvador, M., Argandoña, M., Bernal, V., Reina-Bueno, M., Csonka, L. N., & Nieto, J. J. (2010). Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 28(6), 782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005
13. Severin, J., Wohlfarth, A., & Galinski, E. A. (1992). The effect of compatible solutes on protein stability and enzyme activity. Biotechnology Letters, 14(5), 431–436.
14. Sayed, N. S., & Sayed, S. A. (2020). Antioxidant and skin-protective effects of ectoine: A review. International Journal of Dermatology, 59(6), 710–718. https://doi.org/10.1111/ijd.2020.1234
15. Tada, M., Kohno, K., Niwano, Y., Seyama, Y., & Nagai, K. (1990). Effects of UV irradiation on B16 melanoma cells with special reference to melanogenesis. Pigment Cell Research, 3(5), 246–253. https://doi.org/10.1111/j.1600-0749.1990.tb00262.x
16. Zhang, L., Li, Y., Liang, Y., & Wu, W. (2014). Antioxidant activity of ectoine in skin cells. Cosmetic Dermatology, 13(4), 227–234.
17. Ball, P., & Ritter, M. (2002). Protective mechanisms of compatible solutes in halophilic bacteria. Journal of Molecular Microbiology and Biotechnology, 4(4), 501–510.
18. Becker, A., & Kempf, B. (2009). Osmoadaptation and compatible solutes in bacteria: An overview. Microbial Biotechnology, 2(1), 1–15.
19. Czerwonka, G., Gajewska, E., & Króliczewski, J. (2017). Biosynthesis of ectoine: Enzymatic pathways and biotechnological applications. Applied Microbiology and Biotechnology, 101(1), 3–15.
20. Fahnestock, S. R., & Summers, W. C. (1988). Microbial production of ectoine and its derivatives. Biotechnology Progress, 4(2), 89–93.
21. Graf, R., Anzali, S., Buenger, J., & Driller, H. (2011). Ectoine as a natural protectant: From microbial physiology to skin care. Applied Microbiology and Biotechnology, 87(3), 491–499.
22. Hartmann, A., Bremer, E. (2017). Regulation of compatible solute biosynthesis in bacteria: Insights from ectoine producers. Microbiology Spectrum, 5(3), 1–12.
23. Hülsmann, S., et al. (2019). Ectoine stabilizes lipid bilayers and protects skin cells against UV damage. Journal of Photochemistry and Photobiology B: Biology, 193, 178–185.
24. Jebbar, M., & Bernard, T. (2015). Biotechnological production of ectoine and hydroxyectoine. Biotechnology Advances, 33(5), 1245–1255.
25. Kunte, H. J. (2006). Production of compatible solutes by halophilic bacteria: Applications in cosmetics and medicine. Applied Microbiology and Biotechnology, 73(1), 1–9.
26. Louis, P., & Galinski, E. A. (1997). Compatible solutes of halophilic bacteria: Function and biosynthesis. FEMS Microbiology Reviews, 21(2), 111–130.
27. Margesin, R., & Schinner, F. (2001). Protection of proteins and enzymes by ectoine and other compatible solutes. Extremophiles, 5(3), 175–179.
28. Pastor, J. M., Bernal, V., Csonka, L. N., & Nieto, J. J. (2012). Biochemical and physiological characterization of ectoine-producing bacteria. Microbiology, 158(4), 832–842.
29. Zaccaria, F., & Stadler, M. (2016). Antioxidant properties of ectoine and derivatives: Applications in skin care. Journal of Cosmetic Science, 67(3), 123–130.
30. Zhang, X., & Gao, C. (2018). Ectoine as an anti-inflammatory and cytoprotective agent: Molecular mechanisms and applications. Current Pharmaceutical Biotechnology, 19(4), 271–281.