MOLECULAR DETECTION AND CHARACTERIZATION OF PAPGII, HLYA, AND IUCC VIRULENCE GENES AMONG UROPATHOGENIC ESCHERICHIA COLI ISOLATES FROM ACUTE PYELONEPHRITIS AND CYSTITIS
Main Article Content
Keywords
Uropathogenic E. coli; papGII; hlyA; iucC; pyelonephritis; PCR; virulence genes
Abstract
Background:
Uropathogenic Escherichia coli (UPEC) remains the principal cause of urinary tract infections (UTIs), displaying a wide spectrum of disease from cystitis to severe pyelonephritis. Molecular virulence determinants such as P-fimbrial adhesin (papGII), α-hemolysin (hlyA), and aerobactin (iucC) facilitate colonization, immune evasion, and tissue injury.
Objectives:
To determine the prevalence of papGII, hlyA, and iucC genes among E. coli isolates from cystitis and pyelonephritis patients and to correlate molecular findings with clinical outcomes and antimicrobial resistance.
Methods:
Ninety UPEC isolates (45 from acute pyelonephritis, 45 from cystitis) were identified by conventional methods. DNA was extracted via heat-lysis and amplified for papGII, hlyA, and iucC using SYBR Green PCR. Statistical comparison was performed with χ² test using SPSS v25.
Results:
papGII, hlyA, and iucC were detected in 40 %, 17.7 %, and 40 % of pyelonephritis isolates, and 28.9 %, 22.2 %, and 31.1 % of cystitis isolates, respectively. Co-occurrence of papGII and iucC was strongly associated with upper-tract infection (p < 0.05). Presence of hlyA correlated with hematuria and elevated CRP. No isolate contained all three genes simultaneously.
Conclusion:
The study highlights a higher prevalence of papGII and iucC genes in pyelonephritis strains, implying their synergistic role in renal invasion. Integration of molecular profiling with clinical data may improve diagnostic accuracy and guide future vaccine or anti-adhesion strategies.
References
2. Bien J, Sokolova O, Bozko P. Role of uropathogenic E. coli virulence factors in UTI pathogenesis. Microb Pathog. 2019;132:198-205. doi:10.1016/j.micpath.2019.04.015
3. Ejrnæs K. Bacterial characteristics of recurrent UTIs. Pathogens. 2021;10(12):1601. doi:10.3390/pathogens10121601
4. Johnson JR et al. Molecular epidemiology of P fimbrial variants and pyelonephritis. Infect Immun. 2017;85(3):e00927-16. doi:10.1128/IAI.00927-16
5. Spurbeck RR, Mobley HLT. Uropathogenic E. coli adhesins in pathogenesis. Virulence. 2016;7(6):566-81. doi:10.1080/21505594.2016.1199300
6. Firoozeh F et al. Virulence factors in UPEC isolates from UTI patients in Iran. J Infect Dev Ctries. 2019;13(5):387-94. doi:10.3855/jidc.11145
7. Luna-Pastén H, Avila-Novoa MG. PCR techniques for virulence gene identification in UPEC. Rev Lat Microbiol. 2022;64(2):165-72. doi:10.37757/j.1806-5551.2022.08.05
8. Karigoudar RM et al. Genotypic characterization of UPEC from South India. Indian J Med Microbiol. 2021;39(3):341-8. doi:10.1016/j.ijmmb.2021.05.007
9. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press; 2017.
10. Bashir S et al. Molecular analysis of virulence genes in UPEC isolates. PLoS One. 2020;15(2):e0227657. doi:10.1371/journal.pone.0227657
11. Moreno E et al. Relationship between virulence and antibiotic resistance in UPEC. Front Microbiol. 2021;12:644759. doi:10.3389/fmicb.2021.644759
12. Siliano PR et al. Virulence genes in transplant-associated UTIs. Transpl Infect Dis. 2023;25(3):e14125. doi:10.1111/tid.14125
13. Ghosh S et al. TLR4 activation by UPEC PapG in renal inflammation. Cell Microbiol. 2020;22(7):e13217. doi:10.1111/cmi.13217
14. Garcia EC, Brumbaugh AR, Mobley HL. Iron acquisition systems in UPEC. Front Cell Infect Microbiol. 2019;9:142. doi:10.3389/fcimb.2019.00142
15. Hagan EC, Lloyd AL, Rasko DA. Aerobactin-mediated virulence in UTI. Infect Immun. 2018;86(2):e00442-17. doi:10.1128/IAI.00442-17
16. Karam MR et al. Distribution of virulence genes in UPEC from Iran. Microb Pathog. 2019;130:132-7. doi:10.1016/j.micpath.2019.03.019
17. Mendez-Arancibia E et al. Genetic diversity and virulence in Chilean UPEC isolates. Infect Genet Evol. 2021;96:105116. doi:10.1016/j.meegid.2021.105116
18. Bahrani-Mougeot FK et al. α-hemolysin-mediated injury in UTI. Am J Physiol Renal Physiol. 2017;312(6):F963-72. doi:10.1152/ajprenal.00673.2016
19. Shaikh S et al. Co-expression of resistance and virulence genes. J Glob Antimicrob Resist. 2020;23:182-9. doi:10.1016/j.jgar.2020.08.001
20. Vila J, Sáez-López E. Plasmid linkage of virulence and resistance. Clin Microbiol Rev. 2016;29(3):639-53. doi:10.1128/CMR.00020-16
21. Lavigne JP et al. Pathotype-resistance relationship in UPEC. BMC Microbiol. 2021;21:248. doi:10.1186/s12866-021-02265-1
22. Cusumano CK et al. Rapid PCR screening for UPEC virulence genes. J Clin Microbiol. 2020;58(10):e01212-20. doi:10.1128/JCM.01212-20
23. Langermann S, Palaszynski S. FimH and PapG vaccines against UTI. Infect Immun. 2018;86(9):e00350-18. doi:10.1128/IAI.00350-18
24. Nickel JC, Costerton JW. Prospects for anti-adhesion UTI vaccines. Nat Rev Urol. 2020;17(10):613-27. doi:10.1038/s41585-020-0368-7
25. Baron S et al. Molecular typing of UPEC pathotypes and clinical outcomes. Front Med. 2022;9:861202. doi:10.3389/fmed.2022.861202
26. Ranjbar R et al. Prevalence of UPEC virulence genes in Iranian hospitals. BMC Infect Dis. 2020;20:864. doi:10.1186/s12879-020-05646-4
27. Manges AR, Johnson JR. UPEC genomics and pathotype evolution. Nat Rev Microbiol. 2015;13(12):695-708. doi:10.1038/nrmicro3567
28. Flores-Mireles AL et al. New perspectives on UTI pathogenesis and immunity. Clin Microbiol Rev. 2024;37(2):e00042-23. doi:10.1128/CMR.00042-23