A COMPREHENSIVE ANALYSIS OF TYPE 3 DIABETES: CONNECTING METABOLIC DYSFUNCTION WITH ALZHEIMER'S DISEASE

Main Article Content

Komal Yadav
Dr. Pragnesh Patani
Mr Rahul Kannar
Dr. Nishkruti R. Mehta

Keywords

Keywords Diabetes mellitus, Alzheimer disease, Insulin resistance, Nerve degeneration, Glucose metabolism disorders, Oxidative stress, Transcriptome.

Abstract

Background-Insulin resistance, which affects neural transmission and energy metabolism, is one metabolic abnormality that is increasingly linked to Alzheimer's disease (AD). Amyloid-beta buildup, tau pathology, and neuroinflammation are all exacerbated by disruption of the insulin pathways in the brain. The idea of "Type 3 Diabetes" (T3D) was born because of these common characteristics. The purpose of this study is to examine the molecular connections between AD and insulin resistance and to highlight new treatment approaches.


Method- Using PubMed, Scopus, Web of Science, and the Cochrane Library, a systematic review was carried out in compliance with PRISMA standards to find publications that were published between January 2010 and July 2025. "Diabetes Mellitus," "Insulin Resistance," "Alzheimer Disease," "Nerve Degeneration," "Cognitive Dysfunction," and other relevant clinical and biological keywords were among the search terms used. The final analysis contained 213 peer-reviewed articles after duplicates were eliminated and predetermined inclusion and exclusion criteria were applied.


Results- A major pathogenic factor that has been repeatedly found to affect tau phosphorylation, amyloid-beta clearance, and brain glucose uptake is insulin resistance. Insulin signaling pathway disruption, particularly PI3K/Akt and GLUT4 translocation, has been linked to oxidative stress, neuroinflammation, and cognitive impairment. Transcriptomic evidence also demonstrated how non-coding RNA’s, such as MEG3 and MALAT1, regulate insulin sensitivity and glucose homeostasis, connecting metabolic imbalance to neural dysfunction.


Conclusion-The idea of T3D is supported by the fact that insulin resistance and impaired glucose metabolism are key factors in the onset and progression of AD. There is encouraging neuroprotective potential when these pathways are targeted. Validating these therapies in extensive clinical trials should be the main goal of future research.

Abstract 0 | PDF Downloads 0

References

1. Zhou M, Shen Q, Li B. JAK inhibitors: a new choice for diabetes mellitus? Diabetol Metab Syndr. 2025;17(1):33.
2. Khashayar P, Rad FF, Tabatabaei-Malazy O, Golabchi SM, Khashayar P, Mohammadi M, et al. Hypoglycaemic agents and bone health; an umbrella systematic review of the clinical trials’ meta-analysis studies. Diabetol Metab Syndr. 2024;16(1):310.
3. Grünblatt E, Yde Ohki CM, Schmitt-Böhrer GA, Riederer P, Walitza S. Exploring the interplay of glucose metabolism, insulin resistance, and neurodegenerative pathologies: insights from streptozotocin and hypoglycaemic in vitro models. J Neural Transm. 2025.
4. Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M et al. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. International Journal of Molecular Sciences. 2024;25(22).
5. Coelho P, Rego AC. In: Ferreira R, Oliveira PF, Nogueira-Ferreira R, editors. Chapter 16 - Glucose, glycolysis, and neurodegenerative disorders. Glycolysis: Academic; 2024. pp. 333–84.
6. Nurkolis F, Harbuwono DS, Taslim NA, Soegondo S, Suastika K, Sparringa RA, et al. New insight on dietary strategies to increase insulin sensitivity and reduce diabetes prevalence: an expert perspective and recommendation. Discover Food. 2025;5(1):136.
7. Ayoub S, Arabi M, Al-Najjar Y, Laws I, Outeiro TF, Chaari A. Glycation in Alzheimer’s disease and type 2 diabetes: the prospect of dual drug approaches for therapeutic interventions. Mol Neurobiol. 2025.
8. Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022;12(4).
9. González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023;24(11).
10. Cao F, Yang F, Li J, Guo W, Zhang C, Gao F, et al. The relationship between diabetes and the dementia risk: a meta-analysis. Diabetol Metab Syndr. 2024;16(1):101.
11. Malik A, Ahmed M, Mansoor S, Ambreen S, Usman B, Shehryar M. Cognitive impairment in type 2 diabetes mellitus. Aureus. 2022;14(2):e22193.
12. Salinas RM, Hiriart M, Acosta I, Sosa AL, Prince MJ. Type 2 diabetes mellitus as a risk factor for dementia in a Mexican population. J Diabetes Complications. 2016;30(7):1234–9.
13. Mechref S, Hatem G, Nehme H, Mhanna R, Meouch S, Rachidi S. Factors affecting cognitive decline among patients with diabetes: A cross-sectional study in Lebanon. Atención Primaria Práctica. 2024;6(1):100188.
14. Zheng Y, Ma Q, Qi X, Zhu Z, Wu B. Prevalence and incidence of mild cognitive impairment in adults with diabetes in the united States. Diabetes Res Clin Pract. 2023;205:110976.
15. Mayeda ER, Haan MN, Kanaya AM, Yaffe K, Neuhaus J. Type 2 diabetes and 10-year risk of dementia and cognitive impairment among older Mexican Americans. Diabetes Care. 2013;36(9):2600–6.
16. Salinas RM, Hiriart M, Acosta I, Sosa AL, Prince MJ. Type 2 diabetes mellitus as a risk factor for dementia in a Mexican population. J Diabetes Complicat. 2016;30(7):1234–9.
17. Bozanic A, Toro P, Bello-Lepe S, Hurtado-Oliva J, Beyle C, Valdés C et al. Cognitive impairment with type 2 diabetes mellitus among community-dwelling older adults in chile: prevalence, risk factors and cognitive characteristics. Front Hum Neurosci. 2023;16.
18. Shamsudeen RP, Sridhar M, Singla S, Gupta R, Mittal V. N, Prevalence and factors associated with cognitive impairment among persons with type 2 diabetes mellitus: a cross-sectional study in medical college hospitals of South India. Clin Epidemiol Global Health. 2024;31:101887.
19. Boccardi V, Travaglini EG, Sciacca E, Mancinetti F, Murasecco I, Guazzarini AG, et al. Dysglycemia, gender, and cognitive performance in older persons living with mild cognitive impairment: findings from a cross-sectional, population-based study. Aging Clin Exp Res. 2024;36(1):145.
20. Espeland MA, Carmichael O, Yasar S, Hugenschmidt C, Hazzard W, Hayden KM, et al. Sex-related differences in the prevalence of cognitive impairment among overweight and obese adults with type 2 diabetes. Alzheimers Dement. 2018;14(9):1184–92.
21. Schernthaner G, Schernthaner-Reiter MH. Diabetes in the older patient: heterogeneity requires individualisation of therapeutic strategies. Diabetologia. 2018;61(7):1503–16.
22. Harris K, Gong J, Shah M, Hajat S, Xu Y, Carcel C et al. Ethnic differences in risk factors for cognitive decline and dementia, in individuals with diabetes: Results from the advance trial. J Hypertens. 2023;41(Suppl 3).
23. Ang SF, Low S, Ng TP, Tan CSH, Ang K, Lim Z, et al. Ethnic-Specific type 2 diabetes risk factor PAX4 R192H is associated with Attention-Specific cognitive impairment in Chinese with type 2 diabetes. J Alzheimers Dis. 2022;88(1):241–9.
24. Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y et al. The role of PI3K signaling pathway in Alzheimer’s disease. Front Aging Neurosci. 2024;16.
25. Albaik M, Sheikh Saleh D, Kauther D, Mohammed H, Alfarra S, Alghamdi A et al. Bridging the gap: glucose transporters, Alzheimer’s, and future therapeutic prospects. Front Cell Dev Biology. 2024;12.
26. Pivovarova O, Höhn A, Grune T, Pfeiffer AFH, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease? Ann Med. 2016;48(8):614–24.
27. Jitendra Joshi N, Raja Sekhar Reddy A. Navigating the GSK-3β inhibitors as versatile multi-target drug ligands in Alzheimer’s disease intervention – A comprehensive review. Results Chem. 2024;7:101500.
28. Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V et al. Oxidative stress and inflammation in the pathogenesis of neurological disorders: mechanisms and implications. Acta Pharm Sinica B. 2024;15(1).
29. Marttinen M, Takalo M, Natunen T, Wittrahm R, Gabbouj S, Kemppainen S et al. Molecular mechanisms of synaptotoxicity and neuroinflammation in Alzheimer’s disease. Front NeuroSci. 2018;12.
30. Trigo D, Avelar C, Fernandes M, Sá J. Da Cruz e Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett. 2022;596(9):1095–110.
31. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Therapy. 2023;8(1):267.
32. Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: opportunities for novel therapeutics development. Biochem Pharmacol. 2021;193:114786.
33. Davanzo GG, Castro G, Monteiro LB, Castelucci BG, Jaccomo VH, da Silva FC, et al. Obesity increases blood-brain barrier permeability and aggravates the mouse model of multiple sclerosis. Multiple Scler Relat Disorders. 2023;72:104605.
34. Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Therapy. 2022;7(1):216.
35. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther. 2014;6(3):35.
36. Kandimalla R, Thirumala V, Reddy P. Is Alzheimer’s disease a type 3 diabetes?? A critical appraisal. Biochim Et Biophys Acta (BBA) - Mol Basis Disease. 2017;1863(5):1078–89.
37. Camaya I, Donnelly S, O’Brien B. Targeting the PI3K/Akt signaling pathway in pancreatic β-cells to enhance their survival and function: an emerging therapeutic strategy for type 1 diabetes. J Diabetes. 2022;14(4):247–60.
38. Taheri R, Mokhtari Y, Yousefi A-M, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): from mechanistic insights into possible therapeutic targets. Cell Biol Int. 2024;48(8):1049–68.
39. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, et al. The energetic brain – A review from students to students. J Neurochem. 2019;151(2):139–65.
40. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I et al. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines. 2023;11(9).
41. Jensen NJ, Wodschow HZ, Nilsson M, Rungby J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci. 2020;21:22.
42. Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, et al. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener. 2024;13(1):41.
43. Genc S, Kurnaz IA, Ozilgen M. Astrocyte - neuron lactate shuttle May boost more ATP supply to the neuron under hypoxic conditions - in Silico study supported by in vitro expression data. BMC Syst Biol. 2011;5(1):162.
44. García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166(4):867–80.
45. Wu A, Lee D, Xiong WC. Lactate metabolism, signaling, and function in brain development, synaptic plasticity, angiogenesis, and neurodegenerative diseases. Int J Mol Sci. 2023;24(17).
46. Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: roles and pathways in ameliorating cognitive impairment associated with Alzheimer’s disease and diabetes. Ageing Res Rev. 2023;90:101999.
47. Peng Y, Yao S-y, Chen Q, Jin H, Du M-q, Xue Y-h, et al. True or false? Alzheimer’s disease is type 3 diabetes: evidences from bench to bedside. Ageing Res Rev. 2024;99:102383.
48. Corraliza-Gomez M, Bermejo T, Lilue J, Rodriguez-Iglesias N, Valero J, Cozar-Castellano I, et al. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging. J Neuroinflamm. 2023;20(1):233.
49. Sędzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int J Mol Sci. 2021;22(18).
50. Benedict C, Grillo CA. Insulin Resistance as a Therapeutic Target in the Treatment of Alzheimer’s Disease: A State-of-the-Art Review. Front NeuroSci. 2018;12.
51. Limantoro J, de Liyis BG, Sutedja JC. Akt signaling pathway: a potential therapy for Alzheimer’s disease through glycogen synthase kinase 3 beta Inhibition. Egypt J Neurol Psychiatry Neurosurg. 2023;59(1):147.
52. Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H et al. How Can Insulin Resistance Cause Alzheimer’s Disease? Int J Mol Sci. 2023;24(4).
53. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, et al. The β-Secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56.
54. Wang L, Yin Y-L, Liu X-Z, Shen P, Zheng Y-G, Lan X-R, et al. Current Understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational Neurodegeneration. 2020;9(1):10.
55. Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochimica et biophysica acta (BBA) -. Mol Basis Disease. 2014;1842(9):1693–706.
56. Cheignon C, Collin F, Sabater L, Hureau C. Oxidative damages on the Alzheimer’s Related-Aβ peptide alters its ability to assemble. Antioxid. 2023;12(2).
57. Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, Ill-Raga G, Muñoz FJ. The dual role of amyloid Beta-Peptide in oxidative stress and inflammation: unveiling their connections in Alzheimer’s disease etiopathology. Antioxid. 2024;13(10).
58. Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: Chick or Egg? Antioxid (Basel). 2021;10(9).
59. Philbert SA, Schönberger SJ, Xu J, Church SJ, Unwin RD, Cooper GJS. Elevated hippocampal copper in cases of type 2 diabetes. eBioMedicine. 2022;86.
60. Sobieska K, Buczyńska A, Krętowski AJ, Popławska-Kita A. Iron homeostasis and insulin sensitivity: unraveling the complex interactions. Reviews Endocr Metabolic Disorders. 2024;25(5):925–39.
61. Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflamm. 2023;20(1):165.
62. Gonçalves RA, Wijesekara N, Fraser PE, De Felice FG. The link between Tau and insulin signaling: implications for Alzheimer’s disease and other tauopathies. Front Cell Neurosci. 2019;13:17.
63. Lauretta E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochimica et biophysica acta (BBA) -. Mol Cell Res. 2020;1867(5):118664.
64. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7(8):656–64.
65. Brunello CA, Merezhko M, Uronen R-L, Huttunen HJ. Mechanisms of secretion and spreading of pathological Tau protein. Cell Mol Life Sci. 2020;77(9):1721–44.
66. Ayers JI, Giasson BI, Borchelt DR. Prion-like spreading in tauopathies. Biol Psychiatry. 2018;83(4):337–46.
67. Samluk L, Ostapczuk P, Dziembowska M. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Mol Biol Cell. 2022;33(8):ar67.
68. Guan PP, Wang P. The involvement of Post-Translational modifications in regulating the development and progression of Alzheimer’s disease. Mol Neurobiol. 2023;60(7):3617–32.
69. Kelley AR, Bach SBH, Perry G. Analysis of post-translational modifications in Alzheimer’s disease by mass spectrometry. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2019;1865(8):2040–7.
70. Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Translational Neurodegeneration. 2024;13(1):23.
71. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98(5):1323–67.
72. Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med. 2022;179:339–62.
73. Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into manganese superoxide dismutase and human diseases. Int J Mol Sci. 2022;23(24).
74. Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front Physiol. 2020;11.
75. Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev. 2022;102(4):1881–906.
76. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxid. 2023;12(2).
77. Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Therapy. 2023;8(1):304.
78. Tang S, Geng Y, Lin Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front Physiol. 2024;15.
79. Xiao B, Goh J-Y, Xiao L, Xian H, Lim K-L, Liou Y-C. Reactive oxygen species trigger Parkin/PINK1 pathway–dependent mitophagy by inducing mitochondrial recruitment of Parkin. Journal of Biological Chemistry. 2017;292(40):16697-708.
80. Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 2018;16(1):2.
81. O’Callaghan B, Hardy J, Plun-Favreau H. PINK1: from parkinson’s disease to mitophagy and back again. PLoS Biol. 2023;21(6):e3002196.
82. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8(2).
83. Galli A, Moretti S, Dule N, Di Cairano ES, Castagna M, Marciani P, et al. Hyperglycemia impairs EAAT2 glutamate transporter trafficking and glutamate clearance in Islets of langerhans: implications for type 2 diabetes pathogenesis and treatment. Am J Physiology-Endocrinology Metabolism. 2024;327(1):E27–41.
84. Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, et al. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun. 2022;13(1):4714.
85. Philippens IHCHM. Chapter 23 - Marmosets in Neurologic Disease Research: Parkinson’s Disease. In: Marini R, Wachtman L, Tardif S, Mansfield K, Fox J, editors. The common marmoset in captivity and biomedical research. Academic; 2019. pp. 415–35.
86. Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain. 2018;11(1):15.
87. Benarroch E. What is the role of lactate in brain metabolism, plasticity, and neurodegeneration?? Neurology. 2024;102(9):e209378.
88. Yamagata K. Lactate supply from astrocytes to neurons and its role in ischemic Stroke-induced neurodegeneration. Neuroscience. 2022;481:219–31.
89. Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, et al. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res. 2025;20(3):779–93.
90. Calkin C, McClelland C, Cairns K, Kamintsky L, Friedman A. Insulin resistance and Blood-Brain barrier dysfunction underlie neuroprogression in bipolar disorder. Front Psychiatry. 2021;12.
91. Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, function, and regulation of the Blood-Brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914.
92. Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The translational potential of microglia and Monocyte-Derived macrophages in ischemic stroke. Front Immunol. 2022;13.
93. Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric Tau drive cognitive decline in Alzheimer’s disease: evidence from clinical and preclinical studies. Alzheimers Dement. 2024;20(1):709–27.
94. Hoorzad P, Mousavinasab F, Tofigh P, Kalahroud EM, Aghaei-Zarch SM, Salehi A, et al. Understanding the lncRNA/miRNA-NFκB regulatory network in diabetes mellitus: from function to clinical translation. Diabetes Res Clin Pract. 2023;202:110804.
95. Mohammed A, Mirza Masroor Ali B, Mohammad Yahya A, Irfan A, Ali Gaithan A, Prakash CJ, et al. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and MIAT expression and their association in type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2021;9(1):e001821.
96. Yang W, Lyu Y, Xiang R, Yang J. Long noncoding RNAs in the pathogenesis of insulin resistance. Int J Mol Sci. 2022;23(24).

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>