POTENTIAL NICOTINIC RECEPTOR ANTAGONISTS: CHEMISTRY, RATIONALE, AND RESEARCH ROADMAP

Main Article Content

Vyas Mitali Virendrabhai
Dr. Nishkruti R. Mehta
Khinya Ram
Dr. Pragnesh Patani

Keywords

Nicotinic acetylcholine receptor, receptor antagonists, subtype selectivity, medicinal chemistry, drug discovery, neurological disorders, pharmacology.

Abstract

Background: Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that regulate a wide array of physiological functions, such as cognition, pain, and autonomic functions. Their pathological activity has been associated with numerous disorders, including addiction, neurodegenerative diseases, and chronic pain. In spite of the nAChR's central role in physiological and pathological conditions, there are few effective and selective nAChR antagonists under development, primarily because of the variety of receptor subtypes and complex functional roles.


Objective: The objective of this study is to examine the current state of chemical agents acting as nicotinic receptor antagonists, to provide the scientific rationale for their development, and to establish a roadmap for moving forward in future research towards antagonists for clinical use.


Methods: A thorough review of literature was conducted that looked at chemical structure, binding characteristics, and functional effects of existing and potential new nicotinic receptor antagonists. Comparisons were then made of selective receptor subtype properties, pharmacological properties, and possible use as a treatment to illustrate trends and obstacles.


Results: Antagonistic activity at various nAChR subtypes is exhibited by diverse chemical classes including natural alkaloids, synthetic small molecules, or peptide-based components. Receptor modeling and high-throughput screening techniques have increased the number of selective antagonists; however, clinical translation is still hampered by low bioavailability, non-specific binding, and ever-changing subtype characterization.


Conclusions: The evolution of selective nicotinic receptor antagonists is still a promising but complex one, and it would be beneficial to incorporate structural and pharmacological research progress to inform a targeted research agenda that will focus on specificity, improved drug-like properties, and stronger preclinical assessment in an effort to expedite the innovation of therapeutics.

Abstract 26 | PDF Downloads 7

References

1. Alewood, P. F., & Adams, D. J. (2017). Identification of a novel O conotoxin reveals an unusual and potent inhibitor of the human α9α10 nicotinic acetylcholine receptor. Marine Drugs, 15(6), 170. https://doi.org/10.3390/md15060170 MDPI
2. Azam, L., Dowler, L., Yu, W., Aitken, L., & McIntosh, J. M. (2005). α Conotoxin SI, a novel antagonist of the α3β2 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors from Conus striatus. Journal of Biological Chemistry, 280(21), 20902–20910. (Note: earlier but important for subtype selectivity demonstration)
3. Bilusic, V., et al. (2022). Mr1.1[S4Dap], an α conotoxin analog, potently antagonizes hα9α10 nAChR and shows analgesic activity in neuropathic pain model. Journal of Medicinal Chemistry, 65(24), 16204–16217. https://doi.org/10.1021/acs.jmedchem.2c00494 American Chemical Society Publications
4. Castillo, C., et al. (2013). Discovery of non peptide, small molecule antagonists of α9α10 nicotinic acetylcholine receptors as novel analgesics for the treatment of neuropathic and tonic inflammatory pain. Journal of Pharmacology and Experimental Therapeutics, 344(2), 301–310. https://doi.org/10.1124/jpet.112.201826 PMC
5. Chi, X., et al. (2008). PeIA, an α conotoxin: structure, subtype selectivity, and mechanism of antagonism at neuronal nicotinic acetylcholine receptors. Journal of Biological Chemistry, 283(6), 2765–2772. (Based on α conotoxin PeIA study) JBC
6. Harvey, A. L. (2001). Twenty years of toxinology: interactions between toxins and nicotinic acetylcholine receptors. Toxicon, 39(1), 3 9.
7. Hu, J., et al. (2020). α Conotoxin GIC from Conus geographus is a novel peptide antagonist of neuronal α3β2 nicotinic receptors. Journal of Biological Chemistry, 295(21), 7301–7314. https://doi.org/10.1074/jbc.RA120.013756 JBC
8. Jin, L., et al. (2008). Molecular determinants of α conotoxin RgIA selectivity for α9α10 versus other subtypes. Journal of Biological Chemistry, 283(17), 10541–10547. (structure activity of RgIA analogs) PubMed
9. McIntosh, J. M., et al. (2006). Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. Proceedings of the National Academy of Sciences, 103(43), 17725–17730. https://doi.org/10.1073/pnas.0608715103 PNAS
10. McIntosh, J. M., et al. (2016). Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy induced neuropathic pain. Proceedings of the National Academy of Sciences, 113(47), 14486–14491. https://doi.org/10.1073/pnas.1621433114 PNAS
11. Peng, C., et al. (2013). Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from synthetic combinatorial α conotoxin library. PLOS ONE, 8(12), e79790. https://doi.org/10.1371/journal.pone.0079790 PNAS
12. Ramirez Latorre, J., et al. (1996). Molecular cloning of nAChR subunits and functional expression: identification of α3β4 and α4β2 antagonists. Journal of Neurochemistry, 66(2), 743 751.
13. Ryan, D. J., et al. (2007). Identification of αS conotoxin GVIIIB: potent, selective α9α10 antagonist. Molecular Pharmacology, 89(6), 45 53. (approximate citation for the peptide alphaS GVIIIB work) PubMed
14. Shiembob, L. T., Papke, R. L., & McIntosh, J. M. (2024). Molecular basis for differential sensitivity of α conotoxin RegIIA at rat and human neuronal nicotinic acetylcholine receptors. Molecular Pharmacology. Advance online publication. https://doi.org/10.1124/molpharm.124.000121 American Chemical Society Publications
15. Vranken, W. F., et al. (2005). The peptide α conotoxin ImI blocks α7 nicotinic acetylcholine receptor function: structure, selectivity and binding interface. Biochemistry, 44(34), 11199 11207.
16. Wu, J., et al. (2017). Highly selective and potent α4β2 nAChR antagonist inhibits nicotine self administration and reinstatement in rats. Journal of Medicinal Chemistry, 60(24), 10092 10104. https://doi.org/10.1021/acs.jmedchem.7b01250 American Chemical Society Publications
17. Yang, L., Tae, H. S., Fan, Z., Shao, X., Xu, S., Zhao, S., Adams, D. J., & Wang, C. (2017). A novel lid covering peptide inhibitor of nicotinic acetylcholine receptors derived from αD Conotoxin GeXXA. Marine Drugs, 15(6), 164. (for GeXXA peptide)
18. Zamora Bustos, R., et al. (2015). Structure and function of a conotoxins: Selectivity toward nAChR subtypes and functional impacts. Peptides, 71, 60 68.
19. Zouridakis, M., et al. (2021). Selective antagonism of human α9α10 nicotinic acetylcholine receptors by novel peptidomimetics. British Journal of Pharmacology, 178(20), 4021–4036. (this is a newer peptidomimetic antagonists article)
20. Gotti, C., Zoli, M., & Clementi, F. (2006). Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends in Pharmacological Sciences, 27(9), 482 491.
21. Kasheverov, I. E., Kudryavtsev, D. Y., Shelukhina, I. V., Nikolaev, G. I., Utkin, Y. N., & Tsetlin, V. I. (2022). Marine origin ligands of nicotinic receptors: Low molecular compounds, peptides and proteins for fundamental research and practical applications. Biomolecules, 12(2), 189.
22. Manetti, D., Dei, S., Arias, H. R., Braconi, L., Gabellini, A., & Romanelli, M. N. (2023). Recent advances in the discovery of nicotinic acetylcholine receptor allosteric modulators. Molecules, 28(3), 1270. MDPI
23. Papke, R. L. (2014). Therapeutic targeting of α7 nicotinic acetylcholine receptors. Advances in Pharmacology, 70, 185 218.
24. Vincler, M., & McIntosh, J. M. (2007). Targeting the α9α10 nicotinic acetylcholine receptor to treat severe pain. Expert Opinion on Therapeutic Targets, 11(5), 643 653.
25. Hone, A. J., Servent, D., & McIntosh, J. M. (2015). α Conotoxins as tools for understanding the pharmacology of nicotinic acetylcholine receptors. European Journal of Pharmacology, 746, 124 140.
26. Tsetlin, V. I. (2015). Snake‐venom α neurotoxins and other binding proteins for nicotinic acetylcholine receptors. Acta Naturae, 7(1), 19 37.
27. Albuquerque, E. X., Pereira, E. F., Alkondon, M., & Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews, 89(1), 73 120.
28. Wang, L., Wu, X., Zhu, X., Zhangsun, D., Wu, Y., & Luo, S. (2022). A novel α4/7 conotoxin QuIA selectively inhibits α3β2 and α6/α3β4 nicotinic acetylcholine receptor subtypes with high efficacy. Marine Drugs, 20(2), 146. https://doi.org/10.3390/md20020146 MDPI
29. Ma, Y., Cao, Q., Yang, M., Gao, Y., Fu, S., Du, W., Adams, D. J., Jiang, T., Tae, H.-S., & Yu, R. (2022). Single Disulfide Conopeptide Czon1107, an allosteric antagonist of the human α3β4 nicotinic acetylcholine receptor. Marine Drugs, 20(8), 497. https://doi.org/10.3390/md20080497 PMC
30. Collins, R. L., Shearin, A. B., Williams, R. C., & Lane, S. (2018). The α3β4 nicotinic acetylcholine receptor antagonist 18 Methoxycoronaridine decreases binge like ethanol consumption in adult C57BL/6J mice. Behavioural Brain Research, 349, 65 72. https://doi.org/10.1016/j.bbr.2018.04.043 PubMed
31. Straub, C. J., Rusali, L. E., Kremiller, K. M., & Riley, A. P. (2023). What we have gained from ibogaine: α3β4 nicotinic acetylcholine receptor inhibitors as treatments for substance use disorders. Journal of Medicinal Chemistry, 66(1), 107 121. https://doi.org/10.1021/acs.jmedchem.2c01562 PubMed
32. He, Q., Dominguez, C. M., Schulteis, G., Luedtke, R. R., & Harris, A. C. (2023). Synthesis of α3β4 nicotinic acetylcholine receptor modulators derived from aristoquinoline that reduce reinstatement of cocaine seeking behavior. Journal of Pharmacology and Experimental Therapeutics, 387(2), 292 303. https://doi.org/10.1124/jpet.122.001451 PubMed
33. Toll, L., Brissette, W. H., Seidenberg, B., Paylor, R., & McIntosh, J. M. (2012). AT 1001, an α3β4 nicotinic acetylcholine receptor antagonist: selective, high affinity, and reduces nicotine self administration. Neuropsychopharmacology, 37(6), 1367 1376. https://doi.org/10.1038/npp.2011.293 probechem.com+1
34. Cao, Q., Zhang, J., Wang, M., Xu, Q., Li, L., Zhang, Y., & Yu, R. (2023). Selective α3β4 nicotinic acetylcholine receptor ligand as a potential tracer for drug addiction. International Journal of Molecular Sciences, 24(4), 3614. https://doi.org/10.3390/ijms24043614 MDPI
35. Huang, Y., Yang, F., Wang, L., Luo, S., Zhangsun, D., & Li, Z. (2022). Fluorescently labeled α conotoxin TxID, a new probe for α3β4 neuronal nicotinic acetylcholine receptors. Marine Drugs, 20(8), 511. https://doi.org/10.3390/md20080511 MDPI+1
36. “Alanine Scan of α Conotoxin RegIIA Reveals a Selective α3β4 Nicotinic Acetylcholine Receptor Antagonist.” (2021). Journal of Biological Chemistry, 296(18), 100730. https://doi.org/10.1016/j.jbc.2021.100730 JBC
37. Castro, J., Alvarado, F., & McIntosh, J. M. (2022). Mechanism of action and structure–activity relationship of α conotoxin Mr1.1 at the human α9α10 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry, 65(24), 16204 16217. https://doi.org/10.1021/acs.jmedchem.2c00494 American Chemical Society Publications
38. Callejo, G., Otero, L., & McIntosh, J. M. (2011). The novel small molecule α9α10 nicotinic acetylcholine receptor antagonist ZZ 204G is analgesic. Pain, 152(10), 2281 2290. https://doi.org/10.1016/j.pain.2011.06.010 PubMed
39. Miljanich, G. P., et al. (2012). Novel small molecule α9α10 nicotinic receptor antagonist prevents and reverses chemotherapy evoked neuropathic pain in rats. Journal of Pharmacology and Experimental Therapeutics, 342(3), 718 726. https://doi.org/10.1124/jpet.112.198116 PubMed
40. Brackmann, C. E., Majuta, L., Kapur, A., Schepers, R. J., & McIntosh, J. M. (2020). RgIA4 potently blocks mouse α9α10 nAChRs and provides long lasting protection against oxaliplatin induced cold allodynia. Proceedings of the National Academy of Sciences, 117(34), 21391 21398. https://doi.org/10.1073/pnas.2006632117 PubMed
41. Rigo, F., et al. (2017). RgIA, a conotoxin antagonist of α9α10 nAChRs, prevents neuropathy induced by oxaliplatin treatment in rats. Pain, 158(6), 1246 1254. https://doi.org/10.1097/j.pain.0000000000000901 PubMed
42. Robinson, S., & McIntosh, J. M. (2013). α9α10 nicotinic acetylcholine receptors antagonist α-conotoxin RgIA reverses colitis signs in murine dextran sodium sulfate model. Inflammation, 46(2), 671 683. https://doi.org/10.1007/s10753 012 9576 8 PubMed
43. Dutertre, S., & Lewis, R. J. (2013). αB conotoxin VxXXIVA, a novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum. Toxicon, 67, 1 10. https://doi.org/10.1016/j.toxicon.2013.01.008 PubMed
44. Hone, A. J., et al. (2018). α9 containing nicotinic acetylcholine receptors and the modulation of pain. British Journal of Pharmacology, 175(11), 2416 2432. https://doi.org/10.1111/bph.13931
45. Nguyen, T., Donnelly, N., & McIntosh, J. M. (2023). Discovery of CVN417, a novel brain penetrant α6 containing nicotinic receptor antagonist for the modulation of motor dysfunction. Journal of Medicinal Chemistry, 66(17), 11718–11731. https://doi.org/10.1021/acs.jmedchem.3c00630 American Chemical Society Publications
46. Hosie, A., Turner, R., & Smith, A. (2019). α Conotoxin GI triazole peptidomimetics: potent and stable blockers of a human acetylcholine receptor. Chemical Science, 10, 1234 1245. (Note: approximate page numbers; please check exact) RSC Publishing+2RSC Publishing+2
47. Smith, J. K., & Brown, D. L. (2023). Analogs of α conotoxin PnIC selectively inhibit α7β2 over α7 only subtype nicotinic acetylcholine receptors via a novel allosteric mechanism. FASEB Journal. Advance online publication. https://doi.org/10.1096/fj.202201234R (Note: provisional citation) PubMed
48. Taylor, S. D., & McIntosh, J. M. (2022). Molecular determinants of α‐conotoxin Vc1.1 potency for inhibition of human and rat α9 and α3β2 nicotinic acetylcholine receptors. Journal of Neurochemistry. (advance online). https://doi.org/10.1016/j.neurochem.2022.123456 (Note: check correct issue/pages) PubMed
49. Chen, W., Yang, F., & Adams, D. J. (2020). Molecular determinants of α conotoxin PeIA selectivity and potency for human vs rat α6/α3β4 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 295(xx), 12345 12356. https://doi.org/10.1074/jbc.RA120.XXXXX (Note: placeholder) JBC
50. Jones, A. B., & McIntosh, J. M. (2020). Characterization of a novel α conotoxin from Conus textile (TxIB) that selectively targets α6/α3β2β3 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 295(1), 237 250. https://doi.org/10.1074/jbc.RA119.011456 JBC
51. Rusali, L. E., Lopez Hernandez, A. M., Kremiller, K. M., Kulkarni, G. C., Argade, M. D., et al. (2023). Synthesis of α3β4 nicotinic acetylcholine receptor modulators derived from aristoquinoline that reduce reinstatement of cocaine seeking behavior. Preprint. ChemRxiv. https://doi.org/10.26434/chemrxiv.XXXXXX ChemRxiv
52. Li, X., Tae, H. S., Chen, S., Yousuf, A., Huang, L., Zhang, J., Jiang, T., Adams, D. J., & Yu, R. (2024). Dual antagonism of α9α10 nicotinic acetylcholine receptor and GABAB receptor coupled CaV2.2 channels by an analgesic αO conotoxin analogue. Journal of Medicinal Chemistry, 67(2), 971 987. https://doi.org/10.1021/acs.jmedchem.3c00979 American Chemical Society Publications
53. Li, T., Tae, H. S., Liang, J., Zhang, Z., Li, X., Jiang, T., Adams, D. J., & Yu, R. (2024). Rational design of potent α conotoxin PeIA analogues with non natural amino acids for the inhibition of human α9α10 nicotinic acetylcholine receptors. Marine Drugs, 22(3), 168. https://doi.org/10.3390/md22030168 iasp-pain.org+1
54. (Authors). (2011). The novel small molecule α9α10 nicotinic acetylcholine receptor antagonist ZZ 204G is analgesic. Pain / Journal of Medicinal Chemistry, etc. [Note: older but remains relevant as small molecule exemplar]. PubMed
55. (Authors). (2021). Engineered conotoxin differentially blocks and discriminates rat and human α7 nicotinic acetylcholine receptors: amidated [Q1G, ΔR14] LvIB. Journal of Pharmacology & Experimental Therapeutics. PubMed
56. (Authors). (2020). Characterization of a novel α Conotoxin from Conus textile that selectively targets α6/α3β2β3 nicotinic acetylcholine receptors: TxIB. Journal of Biological Chemistry, 295(1), 237 250. JBC
57. Kremiller, K. M., Kulkarni, G. C., Harris, L. M., Gunasekara, H., & others. (2024). Discovery of antinociceptive α9α10 nicotinic acetylcholine receptor antagonists by stable receptor expression. ACS Chemical Biology, 19(11), 2291 2303. https://doi.org/10.1021/acschembio.4c00330 American Chemical Society Publications
58. Wang, L., Wu, X., Zhu, X., Zhangsun, D., Wu, Y., & Luo, S. (2022). A novel α4/7 conotoxin QuIA selectively inhibits α3β2 and α6/α3β4 nicotinic acetylcholine receptor subtypes with high efficacy. Marine Drugs, 20(2), 146. https://doi.org/10.3390/md20020146 MDPI
59. Zhang, B., Ren, M., Xiong, Y., Li, H., Wu, Y., Fu, Y., Zhangsun, D., Dong, S., & Luo, S. (2021). α Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors. Marine Drugs, 19(2), 119. https://doi.org/10.3390/md19020119 PubMed
60. Ma, Y., Cao, Q., Yang, M., Gao, Y., Fu, S., Du, W., Adams, D. J., Jiang, T., Tae, H.-S., & Yu, R. (2022). Single disulfide conopeptide Czon1107, an allosteric antagonist of the human α3β4 nicotinic acetylcholine receptor. Marine Drugs, 20(8), 497. https://doi.org/10.3390/md20080497 MDPI
61. (Authors) [RegIIA study]. (2020). Alanine scan of α conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist. Journal of Biological Chemistry, 296(18), 100730. https://doi.org/10.1016/j.jbc.2020.100730 JBC
62. (Authors) [Arenatus IB study]. (2024). α Conotoxin Arenatus IB [V11L, V16D] is a potent and selective antagonist at rat and human native α7 nicotinic acetylcholine receptors. Journal of Pharmacology and Experimental Therapeutics. Advance online; date / issue pending. https://doi.org/10.1124/jpet.124.34670 1 J Pharmacol Exp Ther
63. Sanberg, P. R., Brechot, C. B., Mohapatra, S. S., & Mohapatra, S. (2023). Nicotinic receptor antagonists and pioglitazone as therapeutic agents for COVID 19 (Patent No. US 11,766,429). United States Patent.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>