CARBOHYDRATES AND GI: A COMPARATIVE STUDY OF TROPICAL AND TEMPERATE ROOT CROPS
Main Article Content
Keywords
Carbohydrate, Glycaemic Index (GI), Starch, Sugar, Tropical Distribution.
Abstract
Root crops are global staples, and their impact on human health and nutrition is fundamentally shaped by their carbohydrate content. This review presents a comparative analysis of 15 major tropical and temperate root crops, exploring their carbohydrate composition, glycaemic index (GI), and culinary use. As global staples, their nutritional and physiological effects are directly linked to their carbohydrate profiles. After examining variations in starch and sugar content, the influence of processing methods on GI values, and the resulting implications for their culinary uses and health benefits. Our findings reveal that tropical roots, such as cassava and yams, are characterized by high starch content and a corresponding high GI. Similarly, temperate crops like potatoes also have a high but variable GI, largely dependent on preparation methods. In contrast, other crops, such as sweet potatoes and jicama, possess higher simple sugar and dietary fibre content, respectively, contributing to their lower GI values and diverse culinary applications. Rhizomes like ginger and turmeric are not significant energy sources; their low carbohydrate content makes them valuable as flavour agents and for their ability to modulate GI in other foods. This study concludes that a root crop's botanical origin and geographic location are key determinants of its carbohydrate composition, which in turn dictates its GI and its essential role in human health and diet.
References
2. Nayak, B., Berrios, J. D. J., & Tang, J. (2014). Impact of food processing on the glycemic index (GI) of potato products. Food Research International, 56, 35-46.https://doi.org/10.1016/ j.foodres.2013.12.020
3. Singh, A., Raigond, P., Lal, M. K., Singh, B., Thakur, N., Changan, S. S., ... & Dutt, S. (2020). Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. Lwt, 127, 109363.https://doi.org/10.1016/j.lwt.2020.109363
4. Akyereko, Y. G., Wireko-Manu, F. D., & Oduro, I. (2020). Influence of processing methods on food components and glycaemic index of cassava-based traditional foods.doi: 10.11648/j.jfns.20200801.12
5. Sagili, V. S., Chakrabarti, P., Jayanty, S., Kardile, H., & Sathuvalli, V. (2022). The glycemic index and human health with an emphasis on potatoes. Foods, 11(15), 2302.https://doi.org/10 .3390/foods11152302
6. Bartels, A. (2021). The Glycaemic Index and Load of Three Ghanaian Staple Foods: Sweet Potato, Taro and Ripe Plantain (Doctoral dissertation, University of Cape Coast).URI: http://hdl.handle.net/123456789/7249
7. Sueratman, A. N. E. (2019, November). Some glycemic carbohydrate indices as alternative foods for people with diabetes mellitus (dm). In IOP Conference Series: Earth and Environmental Science (Vol. 382, No. 1, p. 012005). IOP Publishing. DOI 10.1088/1755-1315/382/1/012005
8. Zolotova, D., Teterovska, R., Bandere, D., Lauberte, L., & Niedra, S. (2024). Antidiabetic properties of the root extracts of dandelion (Taraxacum officinale) and burdock (Arctium lappa). Plants, 13(7), 1021.https://doi.org/10.3390/plants13071021
9. Panghal, A., Munezero, C., Sharma, P., & Chhikara, N. (2021). Cassava toxicity, detoxification and its food applications: a review. Toxin Reviews.https://doi.org/10.1080/1 5569543.2018.1560334
10. Eyinla, T. E., Sanusi, R. A., & Maziya-Dixon, B. (2021). Effect of processing and variety on starch digestibility and glycemic index of popular foods made from cassava (Manihot esculenta). Food Chemistry, 356, 129664.https://doi.org/10.1016/j.foodchem.2021.129664
11. Ampofo, D., Agbenorhevi, J. K., Firempong, C. K., & Adu‐Kwarteng, E. (2021). Glycemic index of different varieties of yam as influenced by boiling, frying and roasting. Food science & nutrition, 9(2), 1106-1111.https://doi.org/10.1002/fsn3.2087
12. Eyinla, T. E., Sanusi, R. A., & Maziya-Dixon, B. (2022). Evaluation of in vitro and in vivo Glycemic Index of common staples made from varieties of White Yam (Dioscorea rotundata). Frontiers in Nutrition, 9, 983212.https://doi.org/10.3389/fnut.2022.983212
13. Allen, J. C., Corbitt, A. D., Maloney, K. P., Butt, M. S., & Truong, V. D. (2012). Glycemic index of sweet potato as affected by cooking methods.DOI: 10.2174/1874288201206010001
14. Waidyarathna, G. R. N. N., Ekanayake, S., & Chandrasekara, A. (2021). Comparative analysis of nutrient composition and glycaemic indices of nine sweet potatoes (Ipomoea batatas) varieties. International Journal of Biological and Chemical Sciences, 15(4), 1410-1420.DOI:10.4314/ijbcs.v15i4.9
15. Arsyistawa, H. S., Aini, N., & Setyowati, R. (2025). Effects of Modified Taro Flour by Heat Moisture Treatment Substitution on Dietary Fiber, Glycemic Index, and Elongation of Pasta. In BIO Web of Conferences (Vol. 158, p. 04003). EDP Sciences.
https://doi.org/10.1051 /bioconf/202515804003
16. Simsek, S., & El, S. N. (2015). In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chemistry, 168, 257-261.https://doi.org/10.1016/j.foodchem.2014.07.052
17. Tosif, M. M., Najda, A., Klepacka, J., Bains, A., Chawla, P., Kumar, A., ... & Kaushik, R. (2022). A concise review on taro mucilage: Extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers, 14(6), 1163.https://doi.org/10.3 390/polym14061163
18. González‐Vázquez, M., Calderón‐Domínguez, G., Mora‐Escobedo, R., Salgado‐Cruz, M. P., Arreguín‐Centeno, J. H., & Monterrubio‐López, R. (2022). Polysaccharides of nutritional interest in jicama (Pachyrhizus erosus) during root development. Food Science & Nutrition, 10(4), 1146-1158.https://doi.org/10.1002/fsn3.2746
19. Shi, X., Yu, M., Yin, H., Peng, L., Cao, Y., & Wang, S. (2023). Multiscale structures, physicochemical properties, and in vitro digestibility of oat starch complexes co-gelatinized with jicama non-starch polysaccharides. Food Hydrocolloids, 144, 108983.https://doi.org/10.1016/ j.foodhyd.2023.108983
20. Nissa, C. (2020). Analysis of glycemic index, glycemic load and acceptability of enteral formulas based on tempeh flour and jicama flour as innovations for hyperglycemic patients. Food Research, 4(3), 46-53. https://doi.org/10.26656/fr.2017.4(S3).S19
21. Ramírez Balboa, G., Balois Morales, R., León Fernández, A. E., Bautista Rosales, P. U., Jiménez Zurita, J. O., & Montalvo González, E. (2023). Physicochemical and proximal characterization of starch and flour of jicama (Pachyrhizus erosus L.). Revista bio ciencias, 10.https://doi.org/10.15741/revbio.10.e1427
22. Beigh, M., Hussain, S. Z., Qadri, T., Naseer, B., Raja, T., & Naik, H. (2020). Investigation of process and product parameters for physico-chemical properties of low Glycemic Index water chestnut and barley flour-based extruded snacks. British Food Journal, 122(1), 227-241.https://doi.org/10.1108/BFJ-01-2019-0001
23. Hussain, S. Z., Beigh, M., Qadri, T., Ahmad, I., & Naseer, B. (2020). Development of low glycemic index crackers from water chestnut and barley flour. British Food Journal, 122(4), 1156-1169.https://doi.org/10.1108/BFJ-10-2019-0788
24. Kaur, K., Kaur, G., & Singh, A. (2023). Water chestnut starch: extraction, chemical composition, properties, modifications, and application concerns. Sustainable Food Technology, 1(2), 228-262.DOI: 10.1039/D2FB00041E
25. Ademosun, M. T., Omoba, O. S., & Olagunju, A. I. (2021). Antioxidant properties, glycemic indices, and carbohydrate hydrolyzing enzymes activities of formulated ginger‐based fruit drinks. Journal of Food Biochemistry, 45(3), e13324.https://doi.org/10.1111/jfbc.13324
26. Edo, G. I., Igbuku, U. A., Makia, R. S., Isoje, E. F., Gaaz, T. S., Yousif, E., ... & Umar, H. (2025). Phytochemical profile, therapeutic potentials, nutritional composition, and food applications of ginger: a comprehensive review. Discover Food, 5(1), 1-32. https://doi.org/10.1007/s44187-025-00280-2
27. Karigidi, K. O., Akintimehin, E. S., Fayemiro, M. O., Balogun, B., & Adetuyi, F. O. (2022). Bioactive, antioxidant, antihyperglycemic, and nutritional properties of groundnut‐based snack (Kulikuli) supplemented with ginger. Journal of Food Processing and Preservation, 46(7), e16617.https://doi.org/10.1111/jfpp.16617
28. Govindarajan, V. S., & Connell, D. W. (1983). Ginger—chemistry, technology, and quality evaluation: part 1. CRC critical reviews in food science and nutrition, 17(1), 1-96.https://doi.org/10.1080/10408398209527343
29. Unuofin, J. O., Masuku, N. P., Paimo, O. K., & Lebelo, S. L. (2021). Ginger from farmyard to town: Nutritional and pharmacological applications. Frontiers in Pharmacology, 12, 779352.https://doi.org/10.3389/fphar.2021.779352
30. Rajkumari, S., & Sanatombi, K. (2017). Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. International journal of food properties, 20(sup3), S2668-S2687.https://doi.org/10.1080/10942912.2017.1387556
31. El-Sayed, E. Z., & Hamdy, D. N. M. (2023). Addition of The Modified Turmeric Extract (Curcuma longa L.) to Food and its Functional Effect on Cancer-Related Liver Inflammations. Egyptian Journal of Food Science, 51(2), 199-210.DOI: 10.21608/ejfs.2023 .213441.1166
32. Kumar, H., Dhalaria, R., Guleria, S., Sharma, R., Cimler, R., Dhanjal, D. S., ... & Kuča, K. (2025). Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Critical Reviews in Food Science and Nutrition, 65(6), 1144-1162.https://doi.org/10.1080/10408398.2023.2289645
33. Almeida, H. H., Barros, L., Barreira, J. C., Calhelha, R. C., Heleno, S. A., Sayer, C., ... & Ferreira, I. C. (2018). Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chemistry, 261, 224-232.https://doi.org/10.1016/j.foodchem.2018.04.056
34. THUY, N. M., Van HAO, H., Le Chau Mong, T. H. U., GIAU, T. N., TIEN, V. Q., Van TAI, N., & Van THANH, N. (2023). Effect of turmeric starch, lecithin, and canola oil supplements on waffles quality. Food Science and Technology, 43.DOI: https://doi.org/10.5327/fst.00037
35. Raigond, P., Atkinson, F. S., Lal, M. K., Thakur, N., Singh, B., & Mishra, T. (2020). Potato carbohydrates. In Potato: Nutrition and Food Security (pp. 13-36). Singapore: Springer Singapore. DOIhttps://doi.org/10.1007/978-981-15-7662-1_2
36. Robertson, T. M., Alzaabi, A. Z., Robertson, M. D., & Fielding, B. A. (2018). Starchy carbohydrates in a healthy diet: the role of the humble potato. Nutrients, 10(11), 1764.https://doi.org/10.3390/nu10111764
37. Monro, J., & Mishra, S. (2009). Nutritional value of potatoes: digestibility, glycemic index, and glycemic impact. Advances in potato chemistry and technology, 371-394.https://doi.org/10.1016/B978-0-12-374349-7.00013-1
38. Andersen, S. S., Heller, J. M., Hansen, T. T., & Raben, A. (2018). Comparison of low glycaemic index and high glycaemic index potatoes in relation to satiety: a single-blinded, randomised crossover study in humans. Nutrients, 10(11), 1726.https://doi.org/10.3390/nu10111726
39. Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4), 808.https://doi.org/10.3390/ foods10040808
40. Górecka, D., Komolka, P., Dziedzic, K., & Walkowiak, J. (2020). The Influence of Thermal Processing of Fruit and Vegetables on Their Glycaemic Index and Glycaemic Load. Postepy Hig. Med. Dosw, 74, 205-212.
41. Motegaonkar, S., Shankar, A., Tazeen, H., Gunjal, M., & Payyanad, S. (2024). A comprehensive review on carrot (Daucus carota L.): the effect of different drying methods on nutritional properties and its processing as value-added foods. Sustainable Food Technology, 2(3), 667-688.
42. Jacobo-Velázquez, D. A. (2023). Transformation of carrots into novel food ingredients and innovative healthy foods. Applied Food Research, 3(1), 100303.https://doi.org/10.1016/j.afres. 2023.100303
43. Shim, H., Kim, Y. J., & Shin, Y. (2024). Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea. Applied Sciences, 14(19), 9095.https://doi.org/10.3390/app14199095
44. Kim, D. S., Iida, F., & Joo, N. (2022). Texture properties of parsnip (Pastinaca sativa L.) for the elderly base on the enzyme treatment. International Journal of Food Science and Technology, 57(10), 6730-6743.https://doi.org/10.1111/ijfs.16032
45. Raju R, S., Rao GSN, K., & DSNBK, P. (2021). Antidiabetic activity, alpha-amylase and alpha-glucosidase inhibitory effect of pastinaca sativa extract. Bulletin of Pharmaceutical Sciences Assiut University, 44(2), 387-395.Website: http://bpsa.journals.ekb.eg/
46. Dejanovic, G. M., Asllanaj, E., Gamba, M., Raguindin, P. F., Itodo, O. A., Minder, B., ... & Kern, H. (2021). Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): A systematicreview. PloSone, 16(2),e0247032.https://doi.org/10.1371/journal.pone.0247032
47. Toor, I. F., Sajid, S., Akmal, A., Abidin, Z. U., Fatima, Z., Althawab, S. A., ... & Alsulami, T. (2025). Nutritional Evaluation of Turnip Powder in Cereal Blends: A Study on Wheat, Oats, and Turnips. Food Science & Nutrition, 13(5), e70157.https://doi.org/10.1002/fsn3.70157
48. Oshchepkova, Y. I., Oripova МJ, K. Z., Koraboeva, B. B., & Abdugafurova, D. G. (2023). Physicochemical characterization and biological activity of polysaccharides from the seeds of the turnip brassica rapa. Int J Pharm Sci Dev Res, 9(1), 019-027.DOI: https://dx.doi.org/10.17352/ijpsdr
49. Javed, A., Ahmad, A., Nouman, M., Hameed, A., Tahir, A., & Shabbir, U. (2019). Turnip (Brassica Rapus L.): a natural health tonic. Brazilian Journal of Food Technology, 22, e2018253.https://doi.org/10.1590/1981-6723.25318
50. Kameshwari, M. S. (2013). Chemical constituents of wild onion Urginea indica Kunth Liliaceae. Int J Pharm Life Sci, 4(2), 2414-2420.
51. Prabakaran, R., Joseph, B., & Pradeep, P. N. (2016). Phyto medicinal compounds from Urginea indica Kunth: A synthetic drugs potential alternative. J. Pharm. Res. Int, 1-9.DOI: 10.9734/BJPR/2016/25216
52. Lakshman, A. B., & Paramasivam, G. (2012). Biosystematics studies on medicinal plant Urginea indica Kunth. liliaceae-A review. International journal of pharmacy & life sciences, 3(1).
53. Kameshwari, M. S. (2020). Chemical constituents of wild onion Urginea indica KunthLiliaceae. International Journal of Life Sciences Biotechnology and Pharma Sciences, 16(3), 7-13.
54. MURTHY, G. P. PHYTOCHEMICAL ANALYSIS, IN VITRO ANTI-BACTERIAL AND ANTIOXIDANT ACTIVITIES OF WILD ONION SPS. PANDURANGA MURTHY, G*., MAMTHARANI, DR, TEJAS, TS AND NIRANJAN M. SUARLIKERIMATH.
55. Mahato, D., Sahu, A. P., & Sharma, H. P. (2018). Phytochemical and antioxidant evaluation of Urginea indica Kunth. Indian J. Tradit Knowdl, 17, 783-788.
56. Mondal, S. C., & Eun, J. B. (2022). Mechanistic insights on burdock (Arctium lappa L.) extract effects on diabetes mellitus. Food Science and Biotechnology, 31(8), 999-1008.https://doi.org/10.1007/s10068-022-01091-2
57. Thinkohkaew, K., Aumphaiphensiri, N., Tangamornsiri, T., Niamsiri, N., Potiyaraj, P., & Suppavorasatit, I. (2024). Inulin extracted from burdock root (Arctium lappa L.) incorporated alginate/chitosan hydrogel beads for probiotics encapsulation. Journal of Agriculture and Food Research, 18, 101405.https://doi.org/10.1016/j.jafr.2024.101405
58. Radovanovic, A., Stojceska, V., Plunkett, A., Jankovic, S., Milovanovic, D., & Cupara, S. (2015). The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index. Food Chemistry, 177, 81-88.https://doi.org/10.1016/j.foodchem.2014.12.096
59. Chauhan, D. S., Vashisht, P., Bebartta, R. P., Thakur, D., & Chaudhary, V. (2025). Jerusalem artichoke: A comprehensive review of nutritional composition, health benefits and emerging trends in food applications. Comprehensive Reviews in Food Science and Food Safety, 24(1), e70114.https://doi.org/10.1111/1541-4337.70114
60. Cornescu, G. M., Panaite, T. D., Soica, C., Cismileanu, A., & Matache, C. C. (2023). Jerusalem artichoke (Helianthus tuberosus L.) as a promising dietary feed ingredient for monogastric farm animals. Applied Sciences, 13(23), 12748.https://doi.org/10.3390/app132312748
61. Bolade, M. K., Usman, M. A., & Da-Clarke, U. (2017). Proximate composition, colour characteristics, index of oiliness and estimated glycemic index of deep-fried bitter yam (Dioscorea dumentorum) chips. International Journal of Sciences, 6(11), 39-47.DOI: 10.18483/ijSci.1468
62. Ismail, M., & Sarem, Z. (2024). Studying the impact of some commonly used spices on Glycemic index and-load of a Carbohydrate-rich meal. Research Journal of Pharmacy and Technology, 17(9), 4187-4193.DOI:10.52711/0974-360X.2024.00647
63. Moro, T. D. M. A., Pereira, A. P. A., Lopes, A. S., Pastore, G. M., & Clerici, M. T. P. S. (2022). Retention of bioactive compounds and bifidogenic activity of burdock roots subjected to different processes. International Journal of Gastronomy and Food Science, 27, 100448.https://doi.org/10.1016/j.ijgfs.2021.100448