POINT PREVALENCE OF LUNG FUNCTION ABNORMALITIES IN ADULT PATIENTS WITH RESPIRATORY SYMPTOMS – A PILOT STUDY IN AN INDUSTRIAL BELT IN WEST BENGAL.
Main Article Content
Keywords
Industrial area, Lung function, Air pollution, COPD, Asthma, Small Airways disease, Pre-COPD
Abstract
Residents of industrial areas are exposed to higher level of air pollution leading to increased risk of lung diseases. In this non-interventional point prevalence study we aim to estimate the point prevalence of respiratory abnormalities including florid ling diseases among adult subjects with respiratory symptoms living in an industrial belt of Haldia in Purba Medinipur district of West Bengal. Our study results showed high prevalence of lung function abnormalities among the adult residents. 48% patients showed decreased FEV1, FVC or both. Guideline defined COPD & asthma was 7.8% & 5.9% respectively. 33.33% patients also had Pre-COPD including PRISm. Prevalence of low FEF25-75 with probable Small Airways Disease (SAD) was found to be around 39%. All the recruited patients presented for the first time to a specialist’s clinic showing a serious lack of awareness of respiratory diseases & their impact in the society. We conclude that residents of this industrial area have high prevalence of lung function abnormalities and more improved measures for prevention & management needs to be undertaken.
References
2. Kelly FJ, Fussell JC. Air pollution and airway disease. Clin Exp Allergy 2011;41:1059-71.
3. Karakatsani A, Analitis A, Perifanou D, et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study. Environ Health 2012;11:75.
4. Vineis P, Hoek G, Krzyzanowski M, et al. Air pollution and risk of lung cancer in a prospective study in Europe. Int J Cancer 2006;119:169-74.
5. Sax SN, Zu K, Goodman JE. Air pollution and lung cancer in Europe. Lancet Oncol 2013;14:e439-40.
6. https://ginasthma.org/wp-content/uploads/2025/07/GINA-2025-Strategy-Report_25_05_25-WMS-2.pdf. Accessed on 14th July 2025.
7. https://goldcopd.org/2025-gold-report/. Accessed on 14th July 2025.
8. Alvar Agusti, Leonardo M. Fabbri, Eugenio Baraldi, Bartolome Celli, Massimo Corradi, Rosa Faner, Fernando D. Martinez, Erik Melén, Alberto Papi. Spirometry: A practical lifespan predictor of global health and chronic respiratory and non-respiratory diseases. European Journal of Internal Medicine. Volume 89, 2021, Pages 3-9, ISSN 0953-6205. https://doi.org/10.1016/j.ejim.2021.04.027.
9. Kwon DS, Choi YJ, Kim TH, Byun MK, Cho JH, Kim HJ, Park HJ. FEF25-75% Values in Patients with Normal Lung Function Can Predict the Development of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2020 Nov 12;15:2913-2921. doi: 10.2147/COPD.S261732. PMID: 33209020; PMCID: PMC7669499.
10. Raji H, Haddadzadeh Shoushtari M, Idani E, Tavakol H, Afrakhteh S, Dastoorpoor M, Borsi SH. Forced Expiratory Flow at 25-75% as a Marker for Airway Hyper Responsiveness in Adult Patients with Asthma-like Symptoms. Tanaffos. 2018 Feb;17(2):90-95. PMID: 30627179; PMCID: PMC6320556.
11. Divo MJ, Liu C, Polverino F, Castaldi PJ, Celli BR, Tesfaigzi Y. From pre-COPD to COPD: a Simple, Low cost and easy to IMplement (SLIM) risk calculator. Eur Respir J. 2023 Sep 28;62(3):2300806. doi: 10.1183/13993003.00806-2023. Erratum in: Eur Respir J. 2023 Oct 19;62(4):2350806. doi: 10.1183/13993003.50806-2023. PMID: 37678951; PMCID: PMC10533946.
12. Jin Q, Zhang Z, Zhou T, Zhou X, Jiang X, Xia Y, Guan Y, Liu S, Fan L. Preserved ratio impaired spirometry: clinical, imaging and artificial intelligence perspective. J Thorac Dis. 2025 Jan 24;17(1):450-460. doi: 10.21037/jtd-24-1582. Epub 2025 Jan 22. PMID: 39975722; PMCID: PMC11833564.
13. Miura, S., Iwamoto, H., Omori, K. et al. Preserved ratio impaired spirometry with or without restrictive spirometric abnormality. Sci Rep 13, 2988 (2023). https://doi.org/10.1038/s41598-023-29922-0.
14. Eom SY, Choi J, Bae S, Lim JA, Kim GB, Yu SD, Kim Y, Lim HS, Son BS, Paek D, Kim YD, Kim H, Ha M, Kwon HJ. Health effects of environmental pollution in population living near industrial complex areas in Korea. Environ Health Toxicol. 2018 Jan 16;33(1):e2018004. doi: 10.5620/eht.e2018004. PMID: 29370680; PMCID: PMC5903037.
15. Kumar M, et al. A Longitudinal Study on Respiratory Morbidity due to Air Pollution in an Industrial Town Mandi Gobindgarh, Punjab, India. Med Rep Case Stud, 2021, 06(S5), 25-29.
16. Verma A, Gudi N, Yadav UN, Roy MP, Mahmood A, Nagaraja R, et al. Prevalence of COPD among population above 30 years in India:A systematic review and meta-analysis. J Glob Health 2021;11:04038.
17. Daniel RA, Aggarwal P, Kalaivani M, Gupta SK. Prevalence of chronic obstructive pulmonary disease in India:A systematic review and meta-analysis. Lung India 2021;38:506–13.
18. Doke, Prakash Prabhakarrao. Chronic Respiratory Diseases: A Rapidly Emerging Public Health Menace. Indian Journal of Public Health 67(2):p 192-196, Apr–Jun 2023. | DOI: 10.4103/ijph.ijph_726_23.
19. Singh S, Salvi S, Mangal DK, Singh M, Awasthi S, Mahesh PA, et al. Prevalence, time trends and treatment practices of asthma in India:The global asthma network study. ERJ Open Res 2022;8:00528–2021.
20. Gourgoulianis KI, Katikos P, Moraitis M, Argiriou N, Molyvdas PA. Chronic bronchitis in rural and industrial areas. Ann Agric Environ Med. 2000;7(1):29-31.
21. Salvi, Sundeep; Ghorpade, Deesha. What is the true burden of chronic obstructive pulmonary disease in India and what are its implications at a national level?. Lung India 38(6):p 503-505, Nov–Dec 2021. | DOI: 10.4103/lungindia.lungindia_579_21.
22. Bergin C, Müller N, Nichols DM, Lillington G, Hogg JC, Mullen B, et al. The diagnosis of emphysema. A computed tomographic-pathologic correlation Am Rev Respir Dis 1986 133 541 6.
23. Regan EA, Lynch DA, Curran-Everett D, Curtis JL, Austin JH, Grenier PA, et al. Clinical and radiologic disease in smokers with normal spirometry JAMA Intern Med 2015 175 1539 49.
24. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, et al. Clinical significance of symptoms in smokers with preserved pulmonary function N Engl J Med 2016 374 1811 21.
25. Bhatt SP, Balte PP, Schwartz JE, Cassano PA, Couper D, Jacobs DR Jr, et al. Discriminative accuracy of FEV1:FVC thresholds for COPD-related hospitalization and mortality JAMA 2019 321 2438 47.
26. Kanetake R, Takamatsu K, Park K, Yokoyama A. Prevalence and risk factors for COPD in subjects with preserved ratio impaired spirometry. BMJ Open Respir Res. 2022 Jul;9(1):e001298. doi: 10.1136/bmjresp-2022-001298. PMID: 35868836; PMCID: PMC9315898.
27. KL, Bansal & SS, Bansal & S, Bansal & S, Sahay. (2023). Prevalence of preserved ratio impaired spirometry (PRISM) in patients undergoing spirometry in a medical college hospital. Journal of Medical and Scientific Research. 11. 296-300. 10.17727/JMSR.2023/11-55.
28. Balachandran, J.; Venikrishna, S.; Sajith, S. L.; Thulasi, Athul; Aneeshkumar, S.; Aparna, G. J.. Preserved Ratio Impaired Spirometry: Prevalence and Characteristics in an Outpatient Setting. PULMON 27(1):p 15-23, Jan–Apr 2025. | DOI: 10.4103/pulmon.pulmon_41_24.
29. Agustí A, Hughes R, Rapsomaki E, et al. The many faces of COPD in real life: a longitudinal analysis of the NOVELTY cohort. ERJ Open Res 2024; 10: 00895-2023 [DOI: 10.1183/ 23120541.00895-2023].
30. Kwon DS, Choi YJ, Kim TH, Byun MK, Cho JH, Kim HJ, Park HJ. FEF25-75% Values in Patients with Normal Lung Function Can Predict the Development of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2020 Nov 12;15:2913-2921. doi: 10.2147/COPD.S261732. PMID: 33209020; PMCID: PMC7669499.
31. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205.
32. Ciprandi G, Cirillo I, Klersy C, et al. Role of FEF25-75 as an early marker of bronchial impairment in patients with seasonal allergic rhinitis. Am J Rhinol. 2006;20(6):641–647. doi: 10.2500/ajr.2006.20.2914.
33. Malerba M, Radaeli A, Olivini A, et al. Association of fef25-75% impairment with bronchial hyperresponsiveness and airway inflammation in subjects with asthma-like symptoms. Respiration. 2016;91(3):206–214. doi: 10.1159/000443797.
34. Williamson PA, Clearie K, Menzies D, Vaidyanathan S, Lipworth BJ. Assessment of small-airways disease using alveolar nitric oxide and impulse oscillometry in asthma and COPD. Lung. 2011;189(2):121–129. doi: 10.1007/s00408-010-9275-y.