IDENTIFICATION OF HEAT SHOCK FACTOR GENE VARIANTS IN HEAT-EXPOSED BRICK AND TANDOOR WORKERS VIA WHOLE EXOME SEQUENCING
Main Article Content
Keywords
Heat shock factor, whole-exome sequencing, thermal stress, brick workers, HSF2, environmental genetics
Abstract
Prolonged occupational exposure to extreme heat imposes cellular and systemic stress, predisposing individuals to thermally induced injuries. The heat shock response (HSR), mediated by heat shock factors (HSFs), plays a pivotal role in maintaining protein homeostasis under stress conditions. Genetic variability in HSFs may influence individual responses to heat, shaping adaptive physiology and susceptibility to heat-related disorders.
Aims and Objectives:
This study aimed to investigate the genetic variability of heat shock factor genes (HSF1, HSF2, HSF5, and HSF2BP) in individuals chronically exposed to high-temperature environments. The objectives were to identify unique variants present in heat-exposed workers compared with healthy controls, explore the distribution of variants across coding, intronic, and regulatory regions, and highlight potential functional variants that may contribute to adaptation or susceptibility to thermal stress.
Methodology:
Whole-exome sequencing (WES) was performed on individuals employed in high-heat occupations, including brick factory and tandoor workers in Pakistan. Their genomic data were compared with age- and sex-matched unexposed healthy controls to identify variants specific to the heat-exposed group.
Results:
Fifteen unique variants were identified across HSF1, HSF2, HSF5, and HSF2BP in heat-exposed individuals, with no overlap in controls. HSF2 exhibited the highest number of intronic and regulatory variants, suggesting a potential role in long-term genomic adaptation to thermal environments. Importantly, a potentially functional missense variant (p.Ser473Asn) was detected in HSF5, highlighting its possible contribution to protein homeostasis under heat stress.
Conclusion:
This study provides novel insights into the genetic architecture of thermal stress adaptation in heat-exposed workers. Variants in HSF genes, particularly within HSF2 and HSF5, may serve as candidate markers for resilience to occupational heat exposure. Further functional and population-based studies are warranted to validate their biological relevance and potential use in predictive health screening
References
2. Rossi A, Coccia M, Trotta E, Angelini M, Santoro MG. Regulation of cyclooxygenase-2 expression by heat: A novel aspect of heat shock factor 1 function in human cells. PLoS One. 2012;7(2). doi:10.1371/journal.pone.0031304
3. Rauch JN, Gestwicki JE. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. Journal of Biological Chemistry. 2014;289(3). doi:10.1074/jbc.M113.521997
4. Muzammal M, Ahmad S, Ali MZ, Khan MA. Alopecia-mental retardation syndrome: Molecular genetics of a rare neuro-dermal disorder. Ann Hum Genet. 2021;85(5). doi:10.1111/ahg.12425
5. Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE. Isolation of a cDNA for HSF2: Evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A. 1991;88(16). doi:10.1073/pnas.88.16.6911
6. Ahmad S, Ali MZ, Muzammal M, Mir FA, Khan MA. The molecular genetics of human appendicular skeleton. Molecular Genetics and Genomics. 2022;297(5). doi:10.1007/s00438-022-01930-1
7. Fatima S, Malkani N, Muzammal M, Khan AA, Usama M. Stable Vesicle Production from Bacterial Total Lipid Extracts. Abasyn Journal Life Sciences. 2021;(Volume 4 Issue 1). doi:10.34091/ajls.4.1.1
8. Muzammal M, Firoz A, Ali HM, Farid A, Khan MA, Hakeem KR. Lumateperone Interact with S-Protein of Ebola Virus and TIM-1 of Human Cell Membrane: Insights from Computational Studies. Applied Sciences (Switzerland). 2022;12(17). doi:10.3390/app12178820
9. Baler R, Dahl G, Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol. 1993;13(4). doi:10.1128/mcb.13.4.2486
10. Ahmed I, Muzammal M, Khan MA, et al. Identification of Four Novel Candidate Genes for Non-syndromic Intellectual Disability in Pakistani Families. Biochem Genet. 2024;62(4). doi:10.1007/s10528-023-10556-w
11. Hayat M, Nawaz A, Chinnam S, et al. Formulation development and optimization of herbo synthetic gel: In vitro biological evaluation and in vivo wound healing studies. Process Biochemistry. 2023;130. doi:10.1016/j.procbio.2023.04.010
12. Muzammal M, Khan MA, Mohaini M Al, Alsalman AJ, Hawaj MA Al, Farid A. In Silico Analysis of Honeybee Venom Protein Interaction with Wild Type and Mutant (A82V + P375S) Ebola Virus Spike Protein. Biologics. 2022;2(1). doi:10.3390/biologics2010003
13. Mendillo ML, Santagata S, Koeva M, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150(3). doi:10.1016/j.cell.2012.06.031
14. Fatima S, Muzammal M, Ahmad Khan M, et al. Crispr/Cas9 Endonucleases: A New Era of Genetic Engineering. Abasyn Journal Life Sciences. 2021;(Volume 4 Issue 2). doi:10.34091/ajls.4.2.4
15. Fatima S, Kamran M, Muzammal M, et al. Composition and Function of Saliva: A review. World J Pharm Pharm Sci. 2020;9(6).
16. Mohaini M Al, Farid A, Muzammal M, et al. Pathological study of Pasteurella Multocida Recombinant Clone ABA392. Pakistan Journal of Medical and Health Sciences. 2022;16(2). doi:10.53350/pjmhs221621112
17. Knauf U, Newton EM, Kyriakis J, Kingston RE. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 1996;10(21). doi:10.1101/gad.10.21.2782
18. Muzammal M, Ahmad S, Ali MZ, et al. Whole exome sequencing coupled with in silico functional analysis identified NID1 as a novel candidate gene causing neuro-psychiatric disorder in a Pakistani family. J Natl Sci Found. 2024;51(4). doi:10.4038/jnsfsr.v51i4.11256
19. Al Mohaini M, Farid A, Muzammal M, et al. Enhancing Lipase Production of Bacillus salmalaya Strain 139SI Using Different Carbon Sources and Surfactants. Appl Microbiol. 2022;2(1). doi:10.3390/applmicrobiol2010017
20. Ahmad S, Ali MZ, Muzammal M, et al. Identification of GLI1 and KIAA0825 Variants in Two Families with Postaxial Polydactyly. Genes (Basel). 2023;14(4). doi:10.3390/genes14040869
21. Ayaz M, Muzammal M, Siraj S, et al. Genetic basis of ß-thalassemia in families of pashtun ethnicity in Dera Ismail Khan district of Khyber Pakhtun-Khwa province, Pakistan. Expert Rev Hematol. 2023;16(9). doi:10.1080/17474086.2023.2241639
22. Muzammal M, Khan MA, Fatima S, et al. In silico Analysis of PRODH Mutations and their biological significance in disease etiology. Abasyn Journal Life Sciences. 2022;(Volume 5 Issue 1). doi:10.34091/ajls.5.1.7
23. Gul H, Shah AH, Harripaul R, et al. Homozygosity mapping coupled with whole-exome sequencing and protein modelling identified a novel missense mutation in GUCY2D in a consanguineous Pakistani family with Leber congenital amaurosis. J Genet. 2021;100(2). doi:10.1007/s12041-021-01310-5
24. Zuo J, Rungger D, Voellmy R. Multiple Layers of Regulation of Human Heat Shock Transcription Factor 1. Mol Cell Biol. 1995;15(8). doi:10.1128/mcb.15.8.4319
25. Mohaini M Al, Farid A, Alsalman AJ, et al. Screening of Anticancer and Immunomodulatory Properties of Recombinant pQE-HAS113 Clone Derived from Streptococcus Equi. Pakistan Journal of Medical and Health Sciences. 2022;16(2). doi:10.53350/pjmhs221621100
26. Ullah R, Touseef I, Abid R, et al. Exploitation of selected plant extracts as bio-control against fungal contaminants in animal feed. J King Saud Univ Sci. 2023;35(5). doi:10.1016/j.jksus.2023.102685
27. Muzammal M, Zubair M, Bierbaumer S, et al. Exome sequence analysis in consanguineous Pakistani families inheriting Bardet-Biedle syndrome determined founder effect of mutation c.299delC (p.Ser100Leufs*24) in BBS9 gene. Mol Genet Genomic Med. 2019;7(8). doi:10.1002/mgg3.834
28. Rabindran SK, Giorgi G, Clos J, Wu C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A. 1991;88(16). doi:10.1073/pnas.88.16.6906
29. J. Alsalman A, Farid A, Al Mohaini M, et al. Chitinase Activity by Chitin Degrading Strain (Bacillus Salmalaya) in Shrimp Waste. Int J Curr Res Rev. 2022;14(11). doi:10.31782/ijcrr.2022.141107
30. Khan KA, Khan GM, Muzammal M, et al. Preparation of Losartan Potassium Controlled Release Matrices and In-Vitro Investigation Using Rate Controlling Agents. Molecules. 2022;27(3). doi:10.3390/molecules27030864
31. Muzammal M, Ali MZ, Brugger B, et al. A novel protein truncating mutation in L2HGDH causes L-2-hydroxyglutaric aciduria in a consanguineous Pakistani family. Metab Brain Dis. 2022;37(1). doi:10.1007/s11011-021-00832-2
32. Muzammal M, Di Cerbo A, Almusalami EM, et al. In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology. Genes (Basel). 2022;13(4). doi:10.3390/genes13040698
33. Sullivan EK, Weirich CS, Guyon JR, Sif S, Kingston RE. Transcriptional Activation Domains of Human Heat Shock Factor 1 Recruit Human SWI/SNF. Mol Cell Biol. 2001;21(17). doi:10.1128/mcb.21.17.5826-5837.2001
34. Hussain S, Nawaz A, Hamid M, et al. Mutation screening of multiple Pakistani MCPH families revealed novel and recurrent protein-truncating mutations of ASPM. Biotechnol Appl Biochem. 2022;69(6). doi:10.1002/bab.2286
35. Salamanca HH, Antonyak MA, Cerione RA, Shi H, Lis JT. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One. 2014;9(5). doi:10.1371/journal.pone.0096330
36. J. Alsalman A, Farid A, Al Mohaini M, et al. Analysis and Characterization of Chitinase in Bacillus salmalaya Strain 139SI. Int J Curr Res Rev. 2022;14(11). doi:10.31782/ijcrr.2022.141108
37. N. Alhashem Y, Farid A, Al Mohaini M, et al. Protein Isolation and Separation Techniques of Pasteurella multocidavia One- and Two-Dimen-Sional Gel Electrophoresis. Int J Curr Res Rev. 2022;14(12). doi:10.31782/ijcrr.2022.141208
38. Al Hawaj MA, Farid A, Al Mohaini M, et al. Biosurfactant Screening and Antibiotic Analysis of Bacillus salmalaya. Int J Curr Res Rev. 2022;14(12). doi:10.31782/ijcrr.2022.141209
39. Liu PCC, Thiele DJ. Modulation of human heat shock factor trimerization by the linker domain. Journal of Biological Chemistry. 1999;274(24). doi:10.1074/jbc.274.24.17219
40. Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur. 2022;73(4). doi:10.1007/s42977-022-00138-z
41. Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. Front Plant Sci. 2022;13. doi:10.3389/fpls.2022.837152
42. Abravaya K, Phillips B, Morimoto RI. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol Cell Biol. 1991;11(1). doi:10.1128/mcb.11.1.586
43. Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Elife. 2016;5. doi:10.7554/elife.11576
44. Jaeger AM, Makley LN, Gestwicki JE, Thiele DJ. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. Journal of Biological Chemistry. 2014;289(44). doi:10.1074/jbc.M114.591578
45. Abravaya K, Myers MP, Murphy SP, Morimoto RI. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 1992;6(7). doi:10.1101/gad.6.7.1153
46. Xue GP, Sadat S, Drenth J, McIntyre CL. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot. 2014;65(2). doi:10.1093/jxb/ert399
47. Guettouche T, Boellmann F, Lane WS, Voellmy R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 2005;6. doi:10.1186/1471-2091-6-4
48. Rossi A, Trotta E, Brandi R, Arisi I, Coccia M, Gabriella Santoro M. AIRAP, a new human heat shock gene regulated by heat shock factor 1. Journal of Biological Chemistry. 2010;285(18). doi:10.1074/jbc.M109.082693
49. Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cellular and Molecular Life Sciences. 2018;75(16). doi:10.1007/s00018-018-2836-6
50. Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A. Structure of human heat-shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol. 2016;23(2). doi:10.1038/nsmb.3149
51. Kim T, Samraj S, Jiménez J, Gómez C, Liu T, Begcy K. Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce. BMC Plant Biol. 2021;21(1). doi:10.1186/s12870-021-02959-x
52. Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells. 2020;9(5). doi:10.3390/cells9051202