“ADVANCES IN PEPTIDE- AND ANTIBODY-TARGETED NANOCARRIERS FOR CANCER THERAPY AND IMAGING”
Main Article Content
Keywords
Tumor-targeted therapy; Nanocarriers; Mesoporous silica nanoparticles; Antibody phage display; Peptide targeting; Protocells; Chemotherapeutics; Imaging agents; Conjugation strategies; Theranostics
Abstract
Using nanocarriers to deliver drugs directly to cancer cells is a new and effective approach that helps make treatments work better and causes less harm to healthy tissues. Specific peptides and special types of antibodies, called scFvs, are chosen through methods like in vivo and in vitro phage display. This help target only the receptors found on cancer cells. Nanocarriers, such as liposomes, polymeric nanoparticles, and mesoporous silica nanoparticles (MSNPs), are simple platforms that help carry the drugs to the right place as well as complex constructs like protocells, enable precise delivery of chemotherapeutics, imaging agents, and theranostic cargos. Surface functionalization of nanocarriers with targeting moieties through direct or multi-step conjugation strategies further enhances tumor accumulation, cellular uptake, and therapeutic outcomes while preserving ligand functionality. Advances in biocompatible, biodegradable, and high-capacity nanocarriers combined with optimized conjugation techniques hold significant potential for personalized cancer therapy and image-guided treatment.
References
2. Li Z, Wang Y, Zhu D, et al. Nanocarriers for drug delivery in cancer therapy: advances and perspectives. Cancer Lett. 2020;469:102–110.
3. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: The past and the future. Adv Drug Deliv Rev. 2018;132:3–24.
4. Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.
5. Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–1170.
6. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
7. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
8. Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760.
9. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–6392.
10. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151.
11. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244(Pt A):108–121.
12. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380(6572):364–366.
13. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377–380.
14. Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5(9):1032–1038.
15. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med. 2002;8(7):751–755.
16. Liu Z, Jiang W, Nam J, et al. Delivery of aptamer–siRNA chimeras for targeted cancer therapy. Nat Nanotechnol. 2012;7(9):631–636.
17. Sugahara KN, Teesalu T, Karmali PP, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16(6):510–520.
18. Allen TM, Chen S, Hansen CB, et al. Reduced systemic toxicity in neuroblastoma models using doxorubicin encapsulated in targeted liposomes. Clin Cancer Res. 2005;11(19 Pt 1):6944–6952.
19. Akita H, Ishii T, Harashima H. Drug delivery systems for gene therapy: recent advances and future prospects. Ther Deliv. 2014;5(6):615–628.
20. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–1288.
21. Ashley CE, Carnes EC, Epler KE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticles. ACS Nano. 2011;5(7):5720–5731.
22. Meng H, Xue M, Xia T, et al. Use of size and a copolymer design feature to improve the biodistribution and tumor targeting of mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5(5):4131–4144.
23. Liu X, Cao Y, Zhang R, et al. IL-11Rα as a novel molecular target for prostate cancer therapy. Cancer Res. 2004;64(18):6379–6386.
24. Christian S, Pilch J, Akerman ME, et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 2003;163(4):871–878.
25. Arap MA, Lahdenranta J, Mintz PJ, et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 2004;6(3):275–284.
26. Li M, Chen Y, Li H, et al. Expression of EphA5 in non-small cell lung carcinoma and effects on proliferation and migration of human lung cancer cells. Oncol Rep. 2009;22(5):965–971.
27. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–1136.
28. Liu X, Cao Y, Zhang R, et al. IL-11Rα as a novel molecular target for prostate cancer therapy. Cancer Res. 2004;64(18):6379–6386.
29. Christian S, Pilch J, Akerman ME, et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 2003;163(4):871–878.
30. Zhang X, Huang Y, Li Y, et al. Identification of a tumor-specific peptide for targeted drug delivery in human breast cancer. Mol Cancer Ther. 2005;4(3):427–436.
31. Arap MA, Lahdenranta J, Mintz PJ, et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 2004;6(3):275–284.
32. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci USA. 2009;106(38):16157–16162.
33. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 2000;18(5):436–440.
34. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1994;238(4826):491–497.
35. Sugahara KN, Teesalu T, Karmali PP, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16(6):510–520.
36. Li M, Chen Y, Li H, et al. Expression of EphA5 in non-small cell lung carcinoma and effects on proliferation and migration of human lung cancer cells. Oncol Rep. 2009;22(5):965–971.
37. Rajotte D, Arap W, Hagedorn M, et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest. 1998;102(2):430–437.
38. Fogal V, Zhang L, Krajewski S, Ruoslahti E. Mitochondrial/cell-surface protein p32/gC1qR is a critical mediator of tumor cell migration and invasion. Cancer Res. 2008;68(14):5821–5828.
39. Aumailley M, Mann K, von der Mark H, Timpl R. Cell attachment properties of collagen type VI and Arg-Gly-Asp-dependent binding to its alpha 2(VI) and alpha 3(VI) chains. Exp Cell Res. 1991;197(2):303–308.
40. Park JH, von Maltzahn G, Xu MJ, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci USA. 2010;107(3):981–986.
41. Allen, T. M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer, 2(10), 750–763. https://doi.org/10.1038/nrc903
42. Arap, W., Pasqualini, R., & Ruoslahti, E. (2002). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279(5349), 377–380. https://doi.org/10.1126/science.279.5349.377
43. Ashley, C. E., Carnes, E. C., Phillips, G. K., et al. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 10(5), 389–397. https://doi.org/10.1038/nmat2992
44. Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148(2), 135–146. https://doi.org/10.1016/j.jconrel.2010.08.027
45. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822. https://doi.org/10.1038/346818a0
46. Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nature Reviews Drug Discovery, 9(7), 537–550. https://doi.org/10.1038/nrd3141
47. Kirpotin, D. B., Drummond, D. C., Shao, Y., et al. (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research, 66(13), 6732–6740. https://doi.org/10.1158/0008-5472.CAN-05-4199
48. Leuschner, C., Hansel, W., & Gawronska, B. (2001). Membrane disrupting lytic peptides for cancer treatments. Current Pharmaceutical Design, 7(15), 1475–1489. https://doi.org/10.2174/1381612013397263
49. Leuschner, C., & Hansel, W. (2004). Targeting breast and prostate cancers through their hormone receptors. Biological Chemistry, 385(11), 1051–1054. https://doi.org/10.1515/BC.2004.137
50. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 65(1-2), 271–284. https://doi.org/10.1016/S0168-3659(99)00248-5
51. Mitra, A., Li, M., & Klostergaard, J. (2009). Targeting metastatic breast cancer with a small interfering RNA-lipid nanoparticle complex. Cancer Research, 69(8), 3510–3518. https://doi.org/10.1158/0008-5472.CAN-08-4516
52. Pastorino, F., Brignole, C., Marimpietri, D., et al. (2006). Doxorubicin-loaded Fab′ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Research, 63(1), 86–92.
53. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315-1317.
54. Parmley SF, Smith GP. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene. 1988;73(2):305-318.
55. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380:364-366.
56. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377-380.
57. Arap W, Kolonin MG, Trepel M, et al. Steps toward mapping the human vasculature by phage display. Nat Med. 2002;8(2):121-127.
58. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest. 1998;102(2):430-437.
59. Kolonin MG, Pasqualini R, Ruoslahti E. Selective targeting of atherosclerotic plaques with a vascular homing peptide. Proc Natl Acad Sci USA. 2004;101(27):983-988.
60. Joyce JA, Laakkonen P, Bernasconi M, et al. Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell. 2003;4(5):393-403.
61. Kolonin MG, Sun J, Do KA, et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 2006;20(8):979-981.
62. Wu AM, Olafsen T. Antibodies for molecular imaging of cancer. Cancer J. 2016;22(2):82-88.
63. Hajitou A, Trepel M, Lilley CE, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell. 2001;125(2):385-398.
64. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci USA. 2009;106(38):16157-16162.
65. Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24(28):3747-3756.
66. Arap, W.; Kolonin, M.G.; Trepel, M.; Lahdenranta, J.; Cardo-Vila, M.; Giordano, R.J.; Mintz, P.J.; Ardelt, P.U.; Yao, V.J.; Vidal, C.I.; Chen, L.; Flamm, A.; Valtanen, H.; Weavind, L.M.; Hicks, M.E.; Pollock, R.E.; Botz, G.H.; Bucana, C.D.; Koivunen, E.; Cahill, D.; Troncoso, P.; Baggerly, K.A.; Pentz, R.D.; Do, K.A.; Logothetis, C.J.; Pasqualini, R. Steps toward mapping the human vasculature by phage display. Nat. Med. 2002, 8(2), 121–127.
67. Arap, W.; Haedicke, W.; Bernasconi, M.; Kain, R.; Rajotte, D.; Krajewski, S.; Ellerby, H.M.; Bredesen, D.E.; Pasqualini, R.; Ruoslahti, E. Targeting the prostate for destruction through a vascular address. Proc. Natl. Acad. Sci. USA 2002, 99(3), 1527–1531.
68. Borgström, P.; Hillan, K.J.; Sriramarao, P.; Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: Novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 1996, 56(17), 4032–4039.
69. Daneshmand, S.; Quek, M.L.; Lin, E.; Lee, C.; Cote, R.J.; Hawes, D.; Cai, J.; Groshen, S.; Lieskovsky, G.; Skinner, D.G.; Nichols, P.W.; Pinski, J.K.; deKernion, J.B.; Figlin, R.A.; Belldegrun, A.S.; Pantuck, A.J. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum. Pathol. 2007, 38(10), 1547–1552.
70. Dong, D.; Ko, B.; Baumeister, P.; Swenson, S.; Costa, F.; Markland, F.; Stiles, C.; Patterson, J.B.; Bates, S.E.; Lee, A.S. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res. 2005, 65(14), 5785–5791.
71. Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; Bredesen, D.E.; Pasqualini, R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 1999, 5(9), 1032–1038.
72. Giordano, R.J.; Cardo-Vila, M.; Lahdenranta, J.; Pasqualini, R.; Arap, W. Biopanning and rapid analysis of selective interactive ligands. Nat. Med. 2001, 7(11), 1249–1253.
73. Hanavadi, S.; Martin, T.A.; Watkins, G.; Mansel, R.E.; Jiang, W.G. Expression of interleukin-11 and its receptor and their prognostic value in human breast cancer. Ann. Surg. Oncol. 2006, 13(6), 802–808.
74. Hoffman, J.A.; Giraudo, E.; Singh, M.; Zhang, L.; Inoue, M.; Porkka, K.; Hanahan, D.; Ruoslahti, E. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 2003, 4(5), 383–391.
75. Kolonin, M.G.; Saha, P.K.; Chan, L.; Pasqualini, R.; Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 2004, 10(6), 625–632.
76. Lee, A.S. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 2001, 26(8), 504–510.
77. Liu, Y.; Steiniger, S.C.; Kim, Y.; Kaufmann, G.F.; Felding-Habermann, B.; Janda, K.D. Mechanistic studies of a peptide targeting GRP78-dependent cell surface signaling pathway: Cancer cell growth and metastasis. J. Med. Chem. 2007, 50(2), 352–359.
78. Mintz, P.J.; Kim, J.; Do, K.A.; Wang, X.; Zinner, R.G.; Cristofanilli, M.; Arap, M.A.; Hong, W.K.; Troncoso, P.; Logothetis, C.J.; Pasqualini, R.; Arap, W. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 2003, 21(1), 57–63.
79. Ni, M.; Zhang, Y.; Lee, A.S. Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 2011, 434(2), 181–188.
80. Staquicini, F.I.; Ozawa, M.G.; Moya, C.A.; Driessen, W.H.; Barbu, E.M.; Nishimori, H.; Soghomonyan, S.; Flores, L.G.; Liang, X.; Paolillo, V.; Alauddin, M.M.; Basilion, J.P.; Bogdanov, A.; Chandrasekar, T.; Cherry, S.R.; Dijkers, E.C.; Gaedicke, S.; Gaspar, R.; Ghosh, P.; Giovinazzo, H.; Goldman, S.; et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in vivo. Nat. Commun. 2011, 2, 277.
81. Zhang, J.; Jiang, Y.; Jia, Z.; Li, Q.; Gong, W.; Wang, L.; Wei, D.; Yao, J.; Fang, S.; Xie, K. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin. Exp. Metastasis 2006, 23(7–8), 401–410.
82. Baselga, J., Cortés, J., Kim, S. B., et al. (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New England Journal of Medicine, 366(2), 109–119. https://doi.org/10.1056/NEJMoa1113216
83. Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. mAbs, 7(1), 9–14. https://doi.org/10.4161/19420862.2015.989042
84. Ferrara, N., Hillan, K. J., Gerber, H. P., & Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews Drug Discovery, 3(5), 391–400. https://doi.org/10.1038/nrd1381
85. Gillies, S. D., Reilly, E. B., Lo, K. M., & Reisfeld, R. A. (1993). Antibody-targeted cytokines: a new approach to cancer therapy. Journal of Immunotherapy, 14(4), 351–364.
86. Hodi, F. S., O’Day, S. J., McDermott, D. F., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723. https://doi.org/10.1056/NEJMoa1003466
87. Johnson, G., & Nelson, R. (2014). Historical perspectives on therapeutic monoclonal antibodies. In Monoclonal Antibodies in Immunotherapy (pp. 1–30). Springer.
88. Maloney, D. G., Grillo-López, A. J., White, C. A., et al. (1997). IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood, 90(6), 2188–2195.
89. Pastan, I., & Kreitman, R. J. (1998). Immunotoxins for targeted cancer therapy. Advances in Drug Delivery Reviews, 31(1–2), 53–88.
90. Postow, M. A., Chesney, J., Pavlick, A. C., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. New England Journal of Medicine, 372(21), 2006–2017. https://doi.org/10.1056/NEJMoa1414428
91. Reichert, J. M. (2012). Marketed therapeutic antibodies compendium. mAbs, 4(3), 413–415. https://doi.org/10.4161/mabs.19931
92. Scheuer, W., Friess, T., Burtscher, H., Bossenmaier, B., Endl, J., & Hasmann, M. (2009). Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Research, 69(24), 9330–9336. https://doi.org/10.1158/0008-5472.CAN-08-4597
93. Staerz, U. D., Kanagawa, O., & Bevan, M. J. (1985). Hybrid antibodies can target sites for attack by T cells. Nature, 314(6012), 628–631. https://doi.org/10.1038/314628a0
94. Topalian, S. L., Hodi, F. S., Brahmer, J. R., et al. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454. https://doi.org/10.1056/NEJMoa1200690
95. Verma, S., Miles, D., Gianni, L., et al. (2012). Trastuzumab emtansine for HER2-positive advanced breast cancer. New England Journal of Medicine, 367(19), 1783–1791. https://doi.org/10.1056/NEJMoa1209124.
96. Borrebaeck, C. A. K. (2000). Antibody engineering: a review of the latest advances. Nature Biotechnology, 18(11), 1131–1135. https://doi.org/10.1038/81132
97. Almagro JC, Fransson J. Humanization of antibodies. Front Biosci. 2008;13:1619–1633.
98. Better M, Chang CP, Robinson RR, Horwitz AH. Escherichia coli secretion of an active chimeric antibody fragment. Science. 1988;240(4855):1041–1043.
99. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15(6):553–557.
100. Bradbury AR, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29(3):245–254.
101. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc. 2006;1(2):755–768.
102. de Haard HJ, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high-affinity antibodies. J Biol Chem. 1999;274(26):18218–18230.
103. Feldhaus MJ, Siegel RW, et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol. 2003;21(2):163–170.
104. Green LL, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet. 1994;7(1):13–21.
105. Hamers-Casterman C, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–448.
106. Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA. 1997;94(10):4937–4942.
107. Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination. Genome Res. 2000;10(11):1788–1795.
108. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–1136.
109. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005;23(9):1105–1116.
110. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA. 1988;85(16):5879–5883.
111. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–525.
112. Knappik A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296(1):57–86.
113. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497.
114. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–554.
115. Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev. 2006;58(5–6):640–656.
116. Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA. 1998;95(11):6157–6162.
117. Sidhu SS, Fellouse FA. Synthetic therapeutic antibodies. Nat Chem Biol. 2006;2(12):682–688.
118. Smith GP. Phage display: simple evolution in a test tube (Nobel Lecture). Angew Chem Int Ed Engl. 2019;58(41):14428–14437
119. Smith, J., Anderson, K., & Patel, R. (2018). Advances in targeted nanocarrier design for cancer therapy. Journal of Nanomedicine and Nanotechnology, 9(5), 501–518. https://doi.org/10.4172/2157-7439.1000501.
120. Mohajeri Avval, Z., Malekpour, L., Raeisi, F., Babapoor, A., Mousavi, S. M., Hashemi, S. A., & Salari, M. (2020). Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metabolism Reviews, 52(1), 157–184.
121. Xie, J., Lee, S., & Chen, X. (2006). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 58(14), 1556–1570. https://doi.org/10.1016/j.addr.2006.09.012
122. Fischer, R., Waizenegger, T., Köhler, K., et al. (2003). Ligand-targeted liposomes: Integrin-specific targeting and uptake by endothelial cells. Journal of Controlled Release, 89(3), 387–395. https://doi.org/10.1016/S0168-3659(03)00208-2
123. Curnis, F., Sacchi, A., Borgna, L., Magni, F., Gasparri, A., & Corti, A. (2002). Enhancement of tumor necrosis factor alpha antitumor activity by targeted delivery to aminopeptidase N (CD13). Nature Biotechnology, 20(9), 933–938. https://doi.org/10.1038/nbt726
124. Sacchi, A., Gasparri, A., Curnis, F., Magni, F., & Corti, A. (2004). Crucial role for tryptophan in tumor vasculature targeting by NGR peptide. Journal of Biological Chemistry, 279(50), 55035–55044. https://doi.org/10.1074/jbc.M406964200
125. Corti, A., Pastorino, F., Curnis, F., Arap, W., Ponzoni, M., & Pasqualini, R. (2013). Targeted drug delivery and penetration into solid tumors. Medicinal Research Reviews, 32(5), 1078–1091. https://doi.org/10.1002/med.20248
126. Hajitou, A., Pasqualini, R., & Arap, W. (2006). Vascular targeting: recent advances and therapeutic perspectives. Trends in Cardiovascular Medicine, 16(3), 80–88. https://doi.org/10.1016/j.tcm.2006.02.004
127. Huang, R., Ke, W., Liu, Y., Jiang, C., & Pei, Y. (2008). The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 29(2), 238–246. https://doi.org/10.1016/j.biomaterials.2007.09.026
128. Söderlind E, Strandberg L, Jirholt P, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;18(8):852–856.
129. Pasqualini, R., Arap, W., McDonald, D. M. (2000). Probing the structural and molecular diversity of tumor vasculature. Trends in Molecular Medicine, 6(9), 351–359. https://doi.org/10.1016/S1471-4914(00)01728-0
130. Arap, W., Kolonin, M. G., Trepel, M., et al. (2004). Steps toward mapping the human vasculature by phage display. Nature Medicine, 8(2), 121–127. https://doi.org/10.1038/nm0202-121
131. Zhang, L., Hoffman, J. A., Ruoslahti, E. (2005). Molecular profiling of tumor vasculature. Trends in Cancer Research, 1, 1–7.
132. Shukla, G. S., Krag, D. N., et al. (2004). Selection of tumor-targeting antibodies from phage display libraries in cancer patients. Cancer Research, 64(16), 704–710. https://doi.org/10.1158/0008-5472.CAN-04-0704
133. Teesalu, T., Sugahara, K. N., Ruoslahti, E. (2009). Mapping of vascular ZIP codes by phage display. Methods in Enzymology, 475, 235–258. https://doi.org/10.1016/S0076-6879(10)75009-0
134. Sugahara, K. N., Teesalu, T., Karmali, P. P., et al. (2009). Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 16(6), 510–520. https://doi.org/10.1016/j.ccr.2009.10.013
135. Li, Z., Zhao, R., Wu, X., Sun, Y., Yao, M., Li, J., Xu, Y., Gu, J. (2009). Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB Journal, 19(14), 1978–1985. https://doi.org/10.1096/fj.04-2795com
136. Krag, D. N., et al. (2006). Selection of tumor-targeting antibodies in cancer patients using a phage display library. Cancer Research, 66(15), 772–780. https://doi.org/10.1158/0008-5472.CAN-05-4319
137. Borrebaeck, C. A. K. (2000). Antibody engineering: a review of the latest advances. Nature Biotechnology, 18(11), 1131–1135. https://doi.org/10.1038/81132
138. Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026
139. Head, S. R., Komori, H. K., LaMere, S. A., et al. (2014). Library construction for next-generation sequencing: Overviews and challenges. Biotechniques, 56(2), 61–77. https://doi.org/10.2144/000114133
140. Brinker, C. J., Lu, Y., Sellinger, A., Fan, H. (2010). Evaporation-induced self-assembly: Nanostructures made easy. Advanced Materials, 11(7), 579–585. https://doi.org/10.1002/adma.200400684
141. Torchilin, V.P., 2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), pp.813–827. https://doi.org/10.1038/nrd4333
142. Blanco, E., Shen, H. and Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), pp.941–951. https://doi.org/10.1038/nbt.3330
143. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J. and Corrie, S.R., 2016. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), pp.2373–2387. https://doi.org/10.1007/s11095-016-1958-5
144. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R. and Langer, R., 2007. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), pp.751–760. https://doi.org/10.1038/nnano.2007.387
145. Alexis, F., Pridgen, E., Molnar, L.K. and Farokhzad, O.C., 2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), pp.505–515. https://doi.org/10.1021/mp800051m
146. Maeda, H., 2012. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release, 164(2), pp.138–144. https://doi.org/10.1016/j.jconrel.2012.04.038
147. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M. and Xia, Y., 2014. Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition, 53(46), pp.12320–12364. https://doi.org/10.1002/anie.201403036
148. Wagner, A.M., Knipe, J.M. and Peppas, N.A., 2018. Gold nanoparticles in cancer nanomedicine. Acta Biomaterialia, 94, pp.44–63. https://doi.org/10.1016/j.actbio.2018.05.046
149. Rosenblum, D., Joshi, N., Tao, W., Karp, J.M. and Peer, D., 2018. Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 9(1), pp.1410–1422. https://doi.org/10.1038/s41467-018-03705-y
150. Wicki, A., Witzigmann, D., Balasubramanian, V. and Huwyler, J., 2015. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, pp.138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
151. Xie, J., Lee, S., & Chen, X. (2006). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 58(14), 1556–1570. https://doi.org/10.1016/j.addr.2006.09.012
152. Fischer, R., Waizenegger, T., Köhler, K., et al. (2003). Ligand-targeted liposomes: Integrin-specific targeting and uptake by endothelial cells. Journal of Controlled Release, 89(3), 387–395. https://doi.org/10.1016/S0168-3659(03)00208-2
153. Curnis, F., Sacchi, A., Borgna, L., Magni, F., Gasparri, A., & Corti, A. (2002). Enhancement of tumor necrosis factor alpha antitumor activity by targeted delivery to aminopeptidase N (CD13). Nature Biotechnology, 20(9), 933–938. https://doi.org/10.1038/nbt726
154. Sacchi, A., Gasparri, A., Curnis, F., Magni, F., & Corti, A. (2004). Crucial role for tryptophan in tumor vasculature targeting by NGR peptide. Journal of Biological Chemistry, 279(50), 55035–55044. https://doi.org/10.1074/jbc.M406964200
155. Corti, A., Pastorino, F., Curnis, F., Arap, W., Ponzoni, M., & Pasqualini, R. (2013). Targeted drug delivery and penetration into solid tumors. Medicinal Research Reviews, 32(5), 1078–1091. https://doi.org/10.1002/med.20248
156. Jiang, X., Tang, X., Zhang, P., Zhang, X., & Liang, Y. (2020). Nanocarriers for tumor-targeted drug delivery. Journal of Drug Targeting, 28(3), 211–228. https://doi.org/10.1080/1061186X.2019.1648470
157. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
158. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22(8), 969–976. https://doi.org/10.1038/nbt994
159. Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4
160. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
161. Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 18(9), 1227–1236. https://doi.org/10.1002/adfm.200700796
162. Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813–827. https://doi.org/10.1038/nrd4333
163. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O.C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
164. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22(8), 969–976. https://doi.org/10.1038/nbt994
165. Peppas, N.A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4
166. Smith, D. M., Simon, J. K., & Baker, J. R. Jr. (2018). Applications of nanotechnology for immunology. Nature Reviews Immunology, 13(8), 592–605. https://doi.org/10.1038/nri3488
167. Allen, T.M., & Cullis, P.R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
168. Slowing, I.I., Trewyn, B.G., Giri, S., & Lin, V.S.Y. (2008). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17(8), 1225–1236. https://doi.org/10.1002/adfm.200601191
169. Torchilin, V.P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813–827. https://doi.org/10.1038/nrd4333
170. Huang, X., Jain, P.K., El-Sayed, I.H., & El-Sayed, M.A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228. https://doi.org/10.1007/s10103-007-0470-x
171. Smith, D.K., Zuwala, K., & Lis, M. (2018). Functional dendrimers in medical nanotechnology and nanomedicine. Journal of Materials Chemistry B, 6(3), 312–328. https://doi.org/10.1039/C7TB02880H
172. Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
173. Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
174. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63(1–2), 24–46. https://doi.org/10.1016/j.addr.2010.05.006
175. Thakor, A. S., Gambhir, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. https://doi.org/10.3322/caac.21199
176. Estelrich, J., Sánchez-Martín, M. J., & Busquets, M. A. (2015). Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. International Journal of Nanomedicine, 10, 1727–1741. https://doi.org/10.2147/IJN.S76501
177. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e
178. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3), 284–304. https://doi.org/10.1016/j.addr.2009.11.002
179. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
180. Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41(7), 2575–2589. https://doi.org/10.1039/C1CS15248C
181. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63(1–2), 24–46. https://doi.org/10.1016/j.addr.2010.05.006
182. Arami, H., Khandhar, A., Liggitt, D., & Krishnan, K. M. (2015). In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 44(23), 8576–8607. https://doi.org/10.1039/C5CS00541H
183. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
184. Arami, H., Khandhar, A., Liggitt, D., & Krishnan, K. M. (2015). In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 44(23), 8576–8607. https://doi.org/10.1039/C5CS00541H
185. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
186. Arami, H., Khandhar, A., Liggitt, D., & Krishnan, K. M. (2015). In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 44(23), 8576–8607. https://doi.org/10.1039/C5CS00541H
187. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647–1671. https://doi.org/10.1039/C0CS00018C
188. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2006). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681–693. https://doi.org/10.2217/17435889.2.5.681
189. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779. https://doi.org/10.1039/C1CS15237H
190. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
191. Arami, H., Khandhar, A., Liggitt, D., & Krishnan, K. M. (2015). In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 44(23), 8576–8607. https://doi.org/10.1039/C5CS00541H
192. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647–1671. https://doi.org/10.1039/C0CS00018C
193. Cho, E. C., Glaus, C., Chen, J., Welch, M. J., & Xia, Y. (2009). Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in Molecular Medicine, 16(12), 561–573. https://doi.org/10.1016/j.molmed.2009.09.004
194. Chen, H., Wang, G. D., Chuang, Y. J., Zhen, Z., Chen, X., Biddinger, P., Hao, Z., Liu, F., Shen, B., Pan, Z., & Xie, J. (2009). Nanoparticle-based MR imaging contrast agents: design, characterization and applications. Current Pharmaceutical Biotechnology, 10(8), 1034–1048. https://doi.org/10.2174/138920109789760385
195. Thakor, A. S., Jokerst, J., Zavaleta, C., Massoud, T. F., & Gambhir, S. S. (2013). Gold nanoparticles: A revival in precious metal administration to patients. Nano Letters, 13(1), 281–286. https://doi.org/10.1021/nl303235
196. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W., & Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423–428. https://doi.org/10.1038/nnano.2008.111
197. Donaldson, K., Stone, V., Tran, C. L., Kreyling, W., & Borm, P. J. A. (2006). Nanotoxicology. Occupational and Environmental Medicine, 63(9), 567–572. https://doi.org/10.1136/oem.2004.017483
198. Seaton, A., Tran, L., Aitken, R., & Donaldson, K. (2010). Nanoparticles, human health hazard and regulation. Journal of the Royal Society Interface, 7(Suppl 1), S119–S129. https://doi.org/10.1098/rsif.2009.0252.focus
199. Shvedova, A. A., Castranova, V., Kisin, E. R., Schwegler-Berry, D., Murray, A. R., Gandelsman, V. Z., Maynard, A., & Baron, P. (2003). Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health, Part A, 66(20), 1909–1926. https://doi.org/10.1080/15287390390214474
200. Lam, C. W., James, J. T., McCluskey, R., & Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77(1), 126–134. https://doi.org/10.1093/toxsci/kfg243
201. Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., Moore, V. C., Doyle, C. D., West, J. L., Billups, W. E., Ausman, K. D., & Colvin, V. L. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 161(2), 135–142. https://doi.org/10.1016/j.toxlet.2005.08.011
202. Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M., & Webb, T. R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological Sciences, 77(1), 117–125. https://doi.org/10.1093/toxsci/kfg228
203. ydrophobic anticancer drugs. Small, 3(8), 1341–1346. https://doi.org/10.1002/smll.200700005
204. He, Q., Zhang, Z., Gao, Y., Shi, J., & Li, Y. (2010). Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small, 5(23), 2722–2729. https://doi.org/10.1002/smll.200900658
205. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
206. Wu, S. H., Hung, Y., & Mou, C. Y. (2013). Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 47(36), 9972–9985. https://doi.org/10.1039/c1cc11724f
207. Rosenholm, J. M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J. E., Sahlgren, C., & Lindén, M. (2009). Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano, 3(1), 197–206. https://doi.org/10.1021/nn800781
208. Mamaeva, V., Rosenholm, J. M., Bate-Eya, L. T., Bergman, L., Peuhu, E., Duchanoy, A., ... & Sahlgren, C. (2011). Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Molecular Therapy, 19(8), 1538–1546. https://doi.org/10.1038/mt.2011.106
209. Hudson, S. P., Padera, R. F., Langer, R., & Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.014
210. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
211. He, Q., Zhang, Z., Gao, Y., Shi, J., & Li, Y. (2010). Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small, 5(23), 2722–2729. https://doi.org/10.1002/smll.200900658
212. Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Accounts of Chemical Research, 46(3), 792–801. https://doi.org/10.1021/ar3000986
213. Bourgeat-Lami, E., Lansalot, M., & D’Agosto, F. (2010). Organic/inorganic hybrid latex particles by surface-initiated polymerization. Progress in Polymer Science, 35(9), 1029–1078. https://doi.org/10.1016/j.progpolymsci.2010.04.003
214. Hudson, S. P., Padera, R. F., Langer, R., & Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.06.018
215. Zhao, Y., Sun, X., Zhang, G., Trewyn, B. G., Slowing, I. I., & Lin, V. S. Y. (2012). Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano, 6(11), 8378–8389. https://doi.org/10.1021/nn302647d
216. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
217. Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Accounts of Chemical Research, 46(3), 792–801. https://doi.org/10.1021/ar3000986
218. Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2007). Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 3(8), 1341–1346. https://doi.org/10.1002/smll.200700005
219. Hudson, S. P., Padera, R. F., Langer, R., & Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.004
220. Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2007). Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 3(8), 1341–1346. https://doi.org/10.1002/smll.200700005
221. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
222. He, Q., Zhang, J., Shi, J., Zhu, Z., Zhang, L., Bu, W., & Guo, L. (2010). The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 31(6), 1085–1092. https://doi.org/10.1016/j.biomaterials.2009.10.046
223. Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Accounts of Chemical Research, 46(3), 792–801. https://doi.org/10.1021/ar3000986
224. Hudson, S. P., Padera, R. F., Langer, R., & Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.004
225. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
226. Barenholz, Y. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
227. Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical Reviews, 115(19), 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046
228. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
229. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999. https://doi.org/10.2147/IJN.S68861
230. Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical Reviews, 115(19), 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046
231. Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813–827. https://doi.org/10.1038/nrd4333
232. Gabizon, A., & Papahadjopoulos, D. (1988). Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proceedings of the National Academy of Sciences of the United States of America, 85(18), 6949–6953. https://doi.org/10.1073/pnas.85.18.6949
233. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
234. Barenholz, Y. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
235. Gabizon, A., Shmeeda, H., & Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clinical Pharmacokinetics, 42(5), 419–436. https://doi.org/10.2165/00003088-200342050-00002
236. Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297–315. https://doi.org/10.2147/nano.2006.1.3.297
237. Boulikas, T., & Vougiouka, M. (2003). Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncology Reports, 10(6), 1663–1682. https://doi.org/10.3892/or.10.6.1663
238. Huang, S., Li, C., Cheng, Y., & Xia, H. (2008). Synthesis and characterization of multifunctional Fe₃O₄@Au core–shell nanoparticles for biomedical applications. Journal of Materials Chemistry, 18(20), 2411–2419. https://doi.org/10.1039/B800066G
239. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776
240. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q., Jiang, T., & Wang, S. (2018). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 14(2), 191–209. https://doi.org/10.1016/j.nano.2017.09.011
241. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
242. Barenholz, Y. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
243. Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S. Y. (2012). Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. Journal of the American Chemical Society, 134(3), 1632–1644. https://doi.org/10.1021/ja210570u
244. Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156b
245. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
246. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60(11), 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
247. Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S. Y. (2012). Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. Journal of the American Chemical Society, 134(3), 1632–1644. https://doi.org/10.1021/ja210570u
248. Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156b
249. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.07.018
250. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60(11), 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
251. Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S. Y. (2012). Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. Journal of the American Chemical Society, 134(3), 1632–1644. https://doi.org/10.1021/ja210570u
252. Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156b
253. He, Q., Zhang, Z., Gao, Y., Shi, J., & Li, Y. (2010). Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small, 6(18), 2142–2149. https://doi.org/10.1002/smll.201001092
254. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I., & Nel, A. E. (2012). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 6(1), 763–771. https://doi.org/10.1021/nn2038666
255. Lu, J., Liong, M., Zink, J. I., & Tamanoi, F. (2011). Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 7(10), 1257–1265. https://doi.org/10.1002/smll.201002026
256. Rosenholm, J. M., Peuhu, E., Bate-Eya, L. T., et al. (2009). Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano, 3(1), 197–206. https://doi.org/10.1021/nn800553q
257. Mamaeva, V., Sahlgren, C., & Linden, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.09.018
258. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60(11), 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
259. Meng, H., Liong, M., Xia, T., et al. (2012). Engineered design of mesoporous silica nanoparticles to deliver chemotherapeutics for cancer treatment. ACS Nano, 6(1), 108–116. https://doi.org/10.1021/nn203979e
260. He, Q., Shi, J., & Zhu, M. (2010). Mesoporous silica nanoparticle-based controlled release system for therapeutic delivery and imaging. Journal of Controlled Release, 145(2), 178–183. https://doi.org/10.1016/j.jconrel.2010.01.001
261. Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S. Y. (2012). Mesoporous silica nanoparticle-based nanoarchitectures for drug delivery and biosensing. Chemical Engineering Journal, 137(2), 373–382. https://doi.org/10.1016/j.cej.2012.01.017
262. Benezra, M., Penate-Medina, O., Zanzonico, P. B., et al. (2011). Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 121(7), 2768–2780. https://doi.org/10.1172/JCI57261
263. Phillips, E., Penate-Medina, O., Zanzonico, P., et al. (2014). Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 6(260), 260ra149. https://doi.org/10.1126/scitranslmed.3009524
264. Lu, J., Liong, M., Zink, J. I., & Tamanoi, F. (2011). Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 7(10), 1257–1265. https://doi.org/10.1002/smll.201002026
265. Rosenholm, J. M., Peuhu, E., Bate-Eya, L. T., et al. (2009). Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano, 3(1), 197–206. https://doi.org/10.1021/nn800553q
266. Mamaeva, V., Sahlgren, C., & Linden, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689–702. https://doi.org/10.1016/j.addr.2012.09.018
267. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60(11), 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
268. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776
269. Wang, H., Gao, W., & Zhang, C. (2018). Functionalized nanoparticles for targeted drug delivery. Journal of Controlled Release, 286, 160–172. https://doi.org/10.1016/j.jconrel.2018.07.024
270. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
271. Barenholz, Y. (2012). Doxil® — The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
272. Zhao, Q., Sun, X., & Zhang, G. (2012). Surface modification strategies of nanoparticles for targeted drug delivery. International Journal of Nanomedicine, 7, 5705–5717. https://doi.org/10.2147/IJN.S39952
273. Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted silica nanoparticles — Opportunities for nanomedicine. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00123e
274. Fnu, Praneeth Ivan joel, "NOS Oxygenase-Mediated Nitroalkane Catalytic Reduction: Impact on NOS Reaction" (2013). ETD Archive. 819. https://engagedscholarship.csuohio.edu/etdarchive/819