ENRICHED SPIRULINA: A POTENT ANTIBIOTIC AGAINST MARINE AND HUMAN PATHOGEN VIBRIO PARAHAEMOLYTICUS OPTIMIZED BY REDUCING SILVER NANOCRYSTALS FROM FUNCTIONAL MOLECULES
Main Article Content
Keywords
Abstract
: Organic reduction of nanomaterials is an inexpensive and ecologically feasible method; The major challenge of this method is the optimization. The reduction of metal ions with the conjugation involves either by the extraction from natural materials like plants, algae, fungus, and bacteria or the micro-organisms, which includes the intracellular synthesis of these particles. The present investigation deals with the green synthesis of silver nanoparticles (SNPs) reduced by Spirulina platensis. The reduced nanoparticle by the microorganism was materialized to inhibit the pathogenic Vibrio parahaemolyticus isolated from the aquaculture system of Tamil Nadu. The highest distribution percentage of V. parahaemolyticus was recorded in the farm water collected from shrimp farms of Nagapattinam than in the Cuddalore district. The presence of secondary metabolites in qualitative estimation and in GCMS revealed the presence of 32 compounds in both acetone and methanol extract. The essential fatty acids eicosane was found to have antibiotic potency against shrimp infected with pathogenic bacteria. The synthesized Spirulina SNPs were characterized by a biophysical technique like UV-Vis spectrophotometer DAX, XRD, transmission electron microscopy and scanning electron microscopy. The analysis revealed a spherical structure without any agglomerates whose reduction absorption was at 00-4nm. The well diffusion method, it showed inhibition of human and marine pathogen V. parahaemolyticus, whose inhibitory zone was at 15.30 ± 2.21 and 15.19 ± 2.48 mm respectively. Thus, the Spirulina mediated silver nanoparticles are found to be a simple, economical, and eco-friendly biomaterial to be a potent antibiotic against the shrimp bacteria.
References
2. Agustini, T.W., Suzery, M., Sutrisnanto, D., Ma’ruf WF & Hadiyanto. (2015). Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ Sci. 23, 282-9. https://doi.org/10.1016/j.proenv.2015.01.042
3. Ali, H.E., Shanab, S.M., Shalaby, E.A., El Demerdash, U.M., Abdullah, M.A. (2014). Evaluation of antioxidants, pigments and secondary metabolites contents in Spirulina platensis. Applied Mechanics and Materials. 625,160-163. https://doi.org/10.4028/www.scientific.net/ AMM.625.160
4. Al-Otibi Fatimah, Shahad K, Alkhudhair, Raedah I, Alharbi, Abdulaziz A, Al-Askar, Reem M, Aljowaie, Sameha Al-Shehri (2021). The Antimicrobial Activities of Silver Nanoparticles from Aqueous Extract of Grape Seeds against Pathogenic Bacteria and Fungi. Molecules. 26(19), 6081. https://doi.org/10.3390/molecules26196081
5. Anitha, J., Jayraaj, I.A. (2012). Nutritional and antioxidant evaluation of earthworm powder (Eudrillus euginae). Int. Res. J. Pharm. 3(2),177-80.
6. Anitha, J., Murugan, K., Panneerselvam, C., Madhiyazhagan, P., Dinesh, D., Vadivalagan C., Chandramohan, B., Suresh, U., Rajaganesh, R., Subramaniam, J., Nicoletti, M. (2016). Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitology inter. 65(3),276-84. https://doi.org/10.1016/j.parint.2016.02.003
7. Ardani HK, Imawan C, Handayani W, Djuhana D, Harmoko A, Fauzia V (2017) Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. Leaves using polyvinyl alcohol. IOP Conf. Ser. Mater. Sci. Eng. 188(1),12056. https://doi.org/10.1088/1757-899X/188/1/012056
8. Baraka A, Dickson S, Gobara M, El-Sayyad GS, Zorainy M, Awaad MI, Hatem H, Kotb MM, Tawfic A.F (2017) Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chemical Papers. 71,2271-2281. https://doi.org/10.1007/s11696-017-0221-9
9. Beknal AK, Korwar PG, Halkai MA, Kulkarni U, Patil BS, Soodam SR (2010) Phytochemical investigation and antioxidant activity study of Drynaria quercifolia Linn. rhizome. Int J Curr Pharmaceut Res. 2(4),36-39.
10. Beneduce L, Vernile A, Spano G, Massa S, Lamacchia F, Oliver JD (2010) Occurrence of Vibrio vulnificus in mussel farms from the Varano lagoon environment. Let App Micro. 51(4),443-9. https://doi.org/10.1111/j.1472-765X.2010. 02917.x
11. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115(1), 23-34. https://doi.org/10.1007/s00436-015-4800-9
12. Benelli G (2016b) Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases. Asian Pac. J. Trop. Biomed. 6(4),353-354. https://doi.org/10.1016/j.apjtb.2015.10.015
13. Biju VN, Gunalan B (2016) Prevalence of Vibrio infection in Penaeus (Litopenaeus) Vannamei Farms. IJSIT 5(6), 485-493.
14. Borowsky LM, Verônica Schmidt, Marisa Cardoso (2007) Estimation of most probable number of Salmonella in minced pork samples. Brazilian Journal of Microbiology 38(3), 544-546. https://doi.org/10.1590/S1517-83822007000300030
15. Briggs M, Funge-Smith S, Subasinghe RP, Phillips M. Introductions and movement of two penaeid shrimp species in Asia and the Pacific. FAO Fisheries Technical Paper. No. 476. Rome, FAO. 2005. 78p.
16. Broberg CA, Thomas J. Calder, Kim Orth (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 13(12-13), 992–1001. https://doi.org/10.1016 /j.micinf.2011.06.013
17. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 4(4),185-91. https://doi.org/10.1007/s12154-011-0063-9
18. Chellapandian H, Jeyachandran S, A. Vijay Anand, Balamuralikrishnan B (2021) Challenges in Controlling Vibriosis in Shrimp Farms. In book: Infections and Sepsis Development, 394pp. https://doi.org/10.5772/intechopen.97018
19. Chakraborty B (2019) Phytochemical screening of Spirulina platensis extracts from Rankala Lake Kolhapur, India. Algal Research. 9(4),38-41.
20. Chiu CH, Guu YK, Liu CH, Pan TM, Cheng W (2007) Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fis Shel Immunol. 23(2),364-377. https://doi.org/10.1016/j.fsi.2006.11.010
21. Colla LM, Reinehr CO, Reichert C, Costa JA (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Biores tech. 98(7),1489-1493. https://doi.org/10.1016/j.biortech.2005.09.030
22. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh F, Davarani, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2), 57 https://doi.org/10.3390/ pharmaceutics10020057
23. Elgendy M, Waleed Salah Alshamy, Hossam Abbas, AM. Kenawy, Liala AM (2015) Effect of Abrupt Environmental Deterioration on the Eruption of Vibriosis in Mari-Cultured Shrimp, Penaeus indicus, in Egypt. Journal of Fisheries and Aquatic Science. https://doi.org/10.3923 /jfas.2015.146.158
24. Elhadi N, Radu S, Chen CH, Nishibuchi M (2004) Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia. J Food Protect. 67(7),1469-1475. https://doi.org/10.4315/0362-028X-67.7.1469
25. Fair RJ, Tor Y (2014) Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry. 6,25-64. https://doi.org/10.4137/PMC.S14459
26. Flegel TW, Lightner DV, Lo CF, Owens L (2008) Shrimp disease control: past, present and future. Diseases in Asian Aquaculture VI. Fish Health Section, Asian Fisheries Society, Manila, Philippines 505:355-78.
27. Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, Cars O, ECDC-EMA working group (2011) Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist Updat. 14 (2),118-24. https://doi.org/10.1016/j.drup.2011.02.003
28. Fuenzalida L, Armijo L, Zabala B, Hernández C, Rioseco ML, Riquelme C, Espejo R.T (2007) Vibrio parahaemolyticus strains isolated during investigation of the summer 2006 seafood related diarrhea outbreaks in two regions of Chile. Int. J. Food Microbiol. 117(3),270-275. https://doi.org/10.1016/j.ijfoodmicro.2007.03.011
29. Gámez-Bayardo S, Gloria Marisol Castañeda-Ruelas, Angélica Espinosa-Plascencia, Maria del Carmen Bermúdez-Almada, Jiménez-Edeza M (2021) Characterization of Vibrio parahaemolyticus strains and evaluation of shrimp cultivation conditions in a farm at the northwestern of Mexico, as risk predictors for its adaptation and dissemination. Lat. Am. J. Aquat. Res. 49, (1). http://dx.doi.org/10.3856/vol49-issue1-fulltext-2512
30. Ganesh EA, Das S, Chandrasekar K, Arun G, Balamurugan S (2010) Monitoring of total heterotrophic bacteria and Vibrio spp. in an aquaculture pond. Current Research Journal of Biological Sciences. 2(1), 48-52.
31. Giamarellou H (2010) Multidrug-resistant Gram-negative bacteria: how to treat and for how long, Int. J. Antimicrob. Agents. 36 (Suppl 2), 50-54. https://doi.org/10.1016/j.ijantimicag. 2010.11.014
32. Gunalan BS, Nina TS, Soundarapandian P, Anand T (2013) Nutritive value of cultured white leg shrimp Litopenaeus vannamei. International Journal of Fisheries and Aquaculture. 5(7),166 – 171. https://doi.org/10.5897/IJFA2013.0333
33. Ismail GA, Allam NG, El-Gemizy WM, Salem MA (2020) The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater. Env Tech. 42(28),4475-89. https://doi.org/10.1080/09593330.2020. 1766576
34. Jayasree L, Janakiram P, Madhavi R (2006) Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). World aquaculture society. 37(4),523-532. https://doi.org/10.1111/j.1749-7345.2006.00066.x
35. Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, Rosenholm J, Salonen J (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res. 12(1),74. https://doi.org/10.1186/s11671-017-1853-y
36. Kannan M, Pushparaj A, Dheeba B, Nageshwari K, Kannan (2014) Phytochemical screening and antioxidant activity of marine algae Gracilaria corticata and Spirulina platensis. J Chem and Pharmaceutical Rese. 6(11),312-318.
37. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79(3),594-8. https://doi.org/10.1016/j.saa.2011.03.040
38. Khan AM, Qureshi RA, Ullah F, Gilani SA, Nosheen A, Sahreen S, Murad W (2011) Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. J. Med. Plants Res. 5(25), 6055-6060.https://doi.org/10.5897/JMPR11.869
39. Jubie S, Dhanabal SP (2012) Gas chromatography-mass spectrometry analysis and antibacterial activity of fatty acid mixture of Spirulina platensis. J Pharm Sci and Res. 4(6),1836– 1838.
40. Lee JK, Jung DW, Eom SY, Oh SW, Kim Y, Kwak HS, Kim YH (2008). Occurrence of Vibrio parahaemolyticus in oysters from Korean retail outlets. Food Control. 19(10),990-994. https://doi.org/10.1016/j.foodcont.2007.10.006
41. Martínez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J nanoparticle res. 10,1343-8. https://doi.org/10.1007/s11051-008-9428-6
42. Martinez-Urtaza J, Huapaya B, Gavilan RG, Blanco-Abad V, Ansede-Bermejo J, Cadarso-Suarez C, Figueiras A, Trinanes J (2008) Emergence of asiatic Vibrio diseases in South America in phase with El Niño. Epidemiology. 19(6), 829-37. https://doi.org/10.1097/EDE.0b01 3e3181883d43
43. Mahdieh M, Zolanvari A, Azimee AS., M. Mahdieh (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 19(3):926-9. https://doi.org/10.1016/j. scient.2012.01.010
44. Mashwani, ZR, Khan MA, Khan,T, Nadhman A (2016) Applications ofplant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci. 234, 132–141. https://doi.org/10.1016/j.cis.2016.04.008
45. Mayer AMS, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol. 6(1),37-52. https://doi.org/10.1007/s10126-003-0007-7
46. Muthusamy G, Thangasamy S, Raja M, Sudhakar Chinnappan, Selvam Kandasamy (2017) Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res 24, 19459–19464. https://doi.org/10.1007/s11356-017-9772-0
47. Nandagopalan V, Prabha AL, Doss A (2015) Biosynthesis and characterization of nanoparticles from three Aristolochia species. World J. Pharm. Pharm. Sci. 4(7),1094-104.
48. Naylor RL, Ronald W. Hardy, Alejandro H. Buschmann, Simon R. Bush, Ling Cao, Dane H. Klinger, David C. Little, Jane Lubchenco, Sandra E. Shumway, Max Troell (2021) A 20-year retrospective review of global aquaculture. Nature. 591(7851),551-563. https://doi.org/10.1038 /s41586-021-03308-6
49. Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and surfaces B: biointerfaces. 102,288-91. https://doi.org/10.1016/j.colsurfb.2012.08.041
50. Norma H, Irene W, Santos G (2009) Microbiologically safe foods. John Wiley & Sons, Inc. New Jersey. https://doi.org/10.1002/9780470439074
51. Ozdemir G, UlkuKarabay N, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res. 18(9),754-757. https://doi.org/10.1002/ptr.1541
52. Parveen A, Yalagatti MS, Abbaraju V, Deshpande R (2018) Emphasized Mechanistic Antimicrobial Study of Biofunctionalized Silver Nanoparticles on Model Proteus mirabilis. Journal of drug delivery. 3850139. https://doi.org/10.1155/2018/3850139
53. Patel RK, CV. Savalia, Kumar R, Swati Gupta, Alpeshkumar Punjalal Suthar, SA Patel, NG Patel, Irshadullakhan Kalyani (2018) Determination of Vibrio parahaemolyticus from Retail Shrimp of South Gujarat of Navsari District and their Drug Resistance Pattern. International Journal of Current Microbiology and Applied Sciences 7(2),2704-2710. https://doi.org/10.20546 /ijcmas.2018.702.328
54. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces. 108,255-9. https://doi.org/10.1016/j.colsurfb.2013.03.017
55. Raja. S, Nandhini. E, Sahana. K and Dhanakkodi. B (2015) Beneficial and destructive effects of probiotics in aquaculture systems-A review. International Journal of Fisheries and Aquatic Studies.2(3), 153-159.
56. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan M.M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J materials sci tec 24(2),192-6. https://www.jmst.org/EN/Y2008/V24/I02/192
57. Rastogi RP, Madamwar D, Incharoensakdi A (2015) Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. 6: 1254. https://doi.org/10.3389/fmicb.2015.01254
58. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197(8),1079-81. https://doi.org/10.1086/533452
59. Rico A, Satapornvanit K, Haque MM, Min J, Nguyen PT, Telfer TC, Van Den Brink PJ (2012) Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: A critical review 4, 75-93. https://doi.org/10.1111/j.1753-5131.2012.01062.x
60. Santhi R, Lakshmi G, Priyadarshini AM, Anandaraj L (2011) Phytochemical screening of Nerium oleander Linn. leaves and Momordica charantia leaves. Int Res J Pharmacy. 2(1),131-135.
61. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences. 97(3),996-1001. https://doi.org/10.1073/pnas.97.3.996
62. Silvester R, Alexander D, Ammanamveetil MHA (2015) Prevalence, antibiotic resistance, virulence and plasmid profiles of Vibrio parahaemolyticus from a tropical estuary and adjoining traditional prawn farm along the southwest coast of India. Ann Microbiol 65, 2141–2149. https://doi.org/10.1007/s13213-015-1053-x
63. Silverstein RM, Bassler GC (1911) Spectrometric identification of organic compounds. New York, NY: John Wiley and Sons 430pp. https://doi.org/10.1002/oms.1210260923
64. Sudha S, Mridula C, Silvester R, Hatha AA (2014) Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. Indian J. Mar. Sci. 43(5), 815–824. http://nopr.niscair.res.in/handle/123456789/28767
65. Sudha SS, Karthic R, Rengaramanujam J, Athulya R (2011) Anti-microbial activity of Spirulina platensis and Aphanothecesp on selected clinical bacterial isolates and its Antioxidant activity. South Asian J Biol Sci. 1(2), 87-98.
66. Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Fron in microbio. 8,515. https://doi.org/10.3389/fmicb.2017.00515
67. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Inter Sci. 275(1),177-82. https://doi.org/10.1016/j.jcis.2004.02.012
68. Subramanian P, R. Anjali, Periyannan Rajasekar, Ethiraj Kannapiran, Baskaralingam Vaseeharan, Narayanan marimuthu Prabhu (2017) Synthesis and Distribution of Bioinspired Silver Nanoparticles Using Spirulina Extract for Control of Vibrio parahaemolyticus Infection in Aquaculture. Asian Journal of Chemistry 29(4),857-863. https://doi.org/10.14233 /ajchem.2017.20335
69. Thenmozhi M, Sivaraj R, Hiranmai YR (2010) A comparative phytochemical analysis of Alstonia scholaris, Lawsonia inermis, Ervatamia divaricata and Asparagus racemosus. Int J Pharma Res Dev. 2(9),86-91.
70. Thorstenson CA, Ullrich MS (2021) Ecological Fitness of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in a Small-Scale Population Dynamics Study. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.623988
71. Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria-A review. J Acute Med 5(1),15-23. https://doi.org/10.1016/j.jacme.2015.02.004
72. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 12,1227-1249.https://doi.org/10.2147/IJN.S121956
73. Xie J, Lee JY, Wang DI, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS nano. 1(5),429-39. https://doi.org/10.1021/nn7000883
74. Zarei M, Borujeni MP., Jamnejad A, Khezrzadeh M (2012) Seasonal prevalence of Vibrio species in retail shrimps with an emphasis on Vibrio parahaemolyticus. Food Control. 25(1),107-109. https://doi.org/10.1016/j.foodcont.2011.10.024
75. Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mater Lett. 123:156-9. https://doi.org/10.1016 /j.matlet.2014.03.026
76. Zulkifli Y, Alitheen NB, Raha AR, Yeap SK, Marlina SR, Nishibuchi M (2009) Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from cockles in Padang, Indonesia. Int. Food Res. J 16(1),53-8.