DIABETES AND ITS COMPLICATIONS: THE ROLE OF GLYCEMIC CONTROL IN PREVENTING LONG-TERM ORGAN DAMAGE

Main Article Content

Rohitaswa Mandal
Sohom Ghosh
Santanu Mandal
Abhishek Mondal
Mainak Ranjan Baksi

Keywords

diabetes mellitus, glycemic control, microvascular complications, continuous glucose monitoring

Abstract

The worldwide prevalence of diabetes mellitus continues to rise because it affects more than 537 million adults today, and doctors expect this number to grow to 643 million by 2030 and 783 million by 2045. The population of diagnosed diabetes patients in India exceeds 74 million, yet another 40 million adults still have not received a diagnosis. The metabolic disorder substantially raises the likelihood of developing both microvascular complications, which affect retinopathy, nephropathy and neuropathy, and macrovascular complications, which include coronary artery disease and stroke. The complications resulting from diabetes shorten human lifespan and deteriorate daily functioning while creating substantial strain on healthcare facilities. The UK Prospective Diabetes Study (UKPDS) and the Diabetes Control and Complications Trial (DCCT) proved through their findings that proper glycemic control stands as a vital factor for decreasing diabetes complications. The implementation of pharmacological treatments together with CGM technologies has proven difficult for maintaining constant glycemic control due to healthcare disparities and restricted access to innovative therapies alongside glycemic variability. The research examines diabetes-related complications about glycemic control while reviewing new treatment approaches and analysing obstacles to successful glycemic management. The research works to develop evidence-based guidelines that will enhance patient outcomes and decrease diabetes-related complications worldwide.

Abstract 46 | PDF Downloads 12

References

1. American Diabetes Association. (2021). 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44(Supplement_1), S151-S167.
2. American Diabetes Association. (2021). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes care, 44(Supplement_1), S15-S33.
3. Beck, R. W., Connor, C. G., Mullen, D. M., Wesley, D. M., & Bergenstal, R. M. (2017). The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes care, 40(8), 994-999.
4. Castera, L., & Cusi, K. (2023). Diabetes and cirrhosis: current concepts on diagnosis and management. Hepatology, 77(6), 2128-2146.
5. Costantini, E., Carlin, M., Porta, M., & Brizzi, M. F. (2021). Type 2 diabetes mellitus and sepsis: state of the art, certainties and missing evidence. Acta Diabetologica, 58(9), 1139-1151.
6. Grattoni, A., Korbutt, G., Tomei, A. A., García, A. J., Pepper, A. R., Stabler, C., ... & de Vos, P. (2025). Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nature Reviews Endocrinology, 21(1), 14-30.
7. Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., ... & Matthews, D. R. (2015). Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes care, 38(1), 140-149.
8. Kumar, D. S., Prakash, B., Chandra, B. S., Kadkol, P. S., Arun, V., Thomas, J. J., ... & Murthy, M. N. (2021). Technological innovations to improve health outcomes in type 2 diabetes mellitus: a randomized controlled study. Clinical epidemiology and global health, 9, 53-56.
9. Lu, X., Xie, Q., Pan, X., Zhang, R., Zhang, X., Peng, G., ... & Tong, N. (2024). Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal transduction and targeted therapy, 9(1), 262.
10. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F., Nauck, M. A., ... & Buse, J. B. (2016). Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 375(4), 311-322.
11. Nakshine, V. S., & Jogdand, S. D. (2023). A comprehensive review of gestational diabetes mellitus: impacts on maternal health, fetal development, childhood outcomes, and long-term treatment strategies. Cureus, 15(10).
12. Neal, B., Perkovic, V., Mahaffey, K. W., De Zeeuw, D., Fulcher, G., Erondu, N., ... & Matthews, D. R. (2017). Canagliflozin and cardiovascular and renal events in type 2 diabetes. New England Journal of Medicine, 377(7), 644-657.
13. Seaquist, E. R., Anderson, J., Childs, B., Cryer, P., Dagogo-Jack, S., Fish, L., ... & Vigersky, R. (2013). Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. The Journal of Clinical Endocrinology & Metabolism, 98(5), 1845-1859.
14. Syed, F. Z. (2022). Type 1 diabetes mellitus. Annals of internal medicine, 175(3), ITC33-ITC48.
15. TODAY Study Group. (2021). Long-term complications in youth-onset type 2 diabetes. New England Journal of Medicine, 385(5), 416-426.
16. Weinberg Sibony, R., Segev, O., Dor, S., & Raz, I. (2024). Overview of oxidative stress and inflammation in diabetes. Journal of diabetes, 16(10), e70014.
17. Yameny, A. A. (2024). Diabetes mellitus overview 2024. Journal of Bioscience and Applied Research, 10(3), 641-645.
18. Zakir, M., Ahuja, N., Surksha, M. A., Sachdev, R., Kalariya, Y., Nasir, M., ... & Ali, M. (2023). Cardiovascular complications of diabetes: from microvascular to macrovascular pathways. Cureus, 15(9).
19. Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., ... & Inzucchi, S. E. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New england journal of medicine, 373(22), 2117-2128.