FREQUENCY OF MALARIA IN CHILDREN AGED 1-15 YEARS PRESENTING WITH ACUTE FEBRILE ILLNESS AT A TERTIARY CARE HOSPITAL IN PESHAWAR
Main Article Content
Keywords
Acute febrile illness, Malaria, Pediatrics, Prevalence, Peshawar
Abstract
Introduction: Acute febrile illness (AFI) is a frequent cause of pediatric hospital visits, with a wide range of underlying etiologies. In malaria-endemic regions like Peshawar, malaria remains a significant and treatable cause of fever in children.
Objective: To determine the frequency of malaria among children aged 1–15 years presenting with acute febrile illness at a tertiary care hospital in Peshawar.
Study Design: Cross-sectional descriptive study.
Setting and Duration: Department of Pediatrics, Hayatabad Medical Complex, Peshawar, from October 21, 2024 to April 28, 2025
Methods: A total of 104 children aged 1 to 15 years presenting with AFI were enrolled through non-probability consecutive sampling. After obtaining informed consent, 5cc of venous blood was drawn under aseptic conditions and tested for malarial parasites using thick and thin blood smear microscopy. Data were analyzed using SPSS version 27.
Results: The mean age of participants was 7.22 ± 3.5 years; 52.9% were male and 47.1% female. The average duration of illness was 6.53 ± 2.05 days. A majority of the children belonged to the middle socioeconomic class (48.1%) and lived in urban areas (66.3%). Most parents had at least secondary education (35.6%). Malaria was diagnosed in 23.1% of the children presenting with AFI.
Conclusion: Malaria is a prevalent cause of acute febrile illness in children within this population. Early recognition and diagnosis remain crucial in regions where malaria is endemic
Objective: To determine the frequency of malaria among children aged 1–15 years presenting with acute febrile illness at a tertiary care hospital in Peshawar.
Study Design: Cross-sectional descriptive study.
Setting and Duration: Department of Pediatrics, Hayatabad Medical Complex, Peshawar, from October 21, 2024 to April 28, 2025
Methods: A total of 104 children aged 1 to 15 years presenting with AFI were enrolled through non-probability consecutive sampling. After obtaining informed consent, 5cc of venous blood was drawn under aseptic conditions and tested for malarial parasites using thick and thin blood smear microscopy. Data were analyzed using SPSS version 27.
Results: The mean age of participants was 7.22 ± 3.5 years; 52.9% were male and 47.1% female. The average duration of illness was 6.53 ± 2.05 days. A majority of the children belonged to the middle socioeconomic class (48.1%) and lived in urban areas (66.3%). Most parents had at least secondary education (35.6%). Malaria was diagnosed in 23.1% of the children presenting with AFI.
Conclusion: Malaria is a prevalent cause of acute febrile illness in children within this population. Early recognition and diagnosis remain crucial in regions where malaria is endemic
References
1. Elfving K, Shakely D, Andersson M, Baltzell K, Ali AS, Bachelard M, et al. Acute uncomplicated febrile illness in children aged 2-59 months in Zanzibar—aetiologies, antibiotic treatment and outcome. PLoS One. 2016;11:e0146054.
2. Ullah Z, Khattak AA, Bano R, Hussain J, Awan UA, Rahman SU. High incidence of malaria along the Pak-Afghan bordering area. J Pak Med Assoc. 2018;68:42-5.
3. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vect Born Dis 2018;55(1):1-5.
4. Admasie A, Zemba A, Paulos W. Insecticide-treated nets utilization and associated factors among under-5 years old children in Mirab Abaya District, Gamo-Gofa Zone, Ethiopia. Front Public Health. 2018;6:7.
5. Delil RK, Dileba TK, Habtu YA, Gone TF, Leta TJ. Magnitude of malaria and factors among febrile cases in low transmission areas of Hadiya Zone, Ethiopia: a facility based cross sectional study. PLoS ONE; 2016:11(5):e0154277.
6. Zgambo M, Mbakaya BC, Kalembo FW. Prevalence and factors associated with malaria parasitaemia in children under the age of five years in Malawi: a comparison study of the 2012 and 2014 Malaria Indicator Surveys (MISs). PLoS One. 2017;12(4):e0175537.
7. Prasad H, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low- and middle-income countries: a systematic review. PloS one 2015;10(6):e0127962.
8. Memon IA, Tariq S, Jamil A. Prevalence of malaria in young febrile children Pak Paed J 2012;36(2):70-4.
9. Abossie A, Yohanes T, Nedu A, Tafesse W, Damitie M. Prevalence of malaria and associated risk factors among febrile children under five years: a cross-sectional study in Arba Minch Zuria District, South Ethiopia. Infect Drug Resist. 2020;13:363–72.
10. [Guideline] Bailey JW, Williams J, Bain BJ, Parker-Williams J, Chiodini P. General Haematology Task Force. Guideline for laboratory diagnosis of malaria. London (UK): British Committee for Standards in Haematology. 2007;19. .
11. Bailey JW, Williams J, Bain BJ, et al. Guideline: the laboratory diagnosis of malaria. General Haematology Task Force of the British Committee for Standards in Haematology. Br J Haematol. 2013 Dec. 163 (5):573-80. .
12. Rapid diagnostic tests for malaria ---Haiti, 2010. MMWR Morb Mortal Wkly Rep. 2010 Oct 29. 59(42):1372-3. .
13. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007 Dec. 77(6 Suppl):119-27. .
14. Centers for Disease Control and Prevention. Notice to Readers: Malaria Rapid Diagnostic Test. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5627a4.htm. Accessed: September 30, 2011.
15. de Oliveira AM, Skarbinski J, Ouma PO, et al. Performance of malaria rapid diagnostic tests as part of routine malaria case management in Kenya. Am J Trop Med Hyg. 2009 Mar. 80(3):470-4. .
16. Polley SD, Gonzalez IJ, Mohamed D, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013 Aug. 208(4):637-44. . .
17. d'Acremont V, Malila A, Swai N, et al. Withholding antimalarials in febrile children who have a negative result for a rapid diagnostic test. Clin Infect Dis. 2010 Sep 1. 51(5):506-11. .
18. Mens P, Spieker N, Omar S, Heijnen M, Schallig H, Kager PA. Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Trop Med Int Health. 2007 Feb. 12(2):238-44. .
19. [Guideline] Centers for Disease Control and Prevention. Updated CDC Recommendations for Using Artemether-Lumefantrine for the Treatment of Uncomplicated Malaria in Pregnant Women in the United States. Available at https://www.cdc.gov/mmwr/volumes/67/wr/mm6714a4.htm?s_cid=mm6714a4_e#contribAff. April 2018; Accessed: April 13, 2018.
20. Dondorp AM, Fanello CI, Hendriksen IC, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010 Nov 13. 376(9753):1647-57. . .
21. Sinclair D, Donegan S, Isba R, Lalloo DG. Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev. 2012 Jun 13. 6:CD005967. .
22. US Food and Drug Administration FDA Approves Coartem Tablets to Treat Malaria. FDA. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm149559.htm. Accessed: April 8, 2009.
23. Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010 Nov 1. 202(9):1362-8. . .
24. Tozan Y, Klein EY, Darley S, Panicker R, Laxminarayan R, Breman JG. Prereferral rectal artesunate for treatment of severe childhood malaria: a cost-effectiveness analysis. Lancet. 2010 Dec 4. 376(9756):1910-5. .
25. Amaratunga C, Sreng S, Suon S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012 Nov. 12(11):851-8. .
26. Dondorp A, Nosten F, Stepniewska K, Day N, White N, South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005 Aug 27-Sep 2. 366 (9487):717-25. . .
27. Othoro C, Johnston D, Lee R, Soverow J, Bystryn JC, Nardin E. Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun. 2009 Feb. 77(2):739-48. . .
28. Richards JS, Stanisic DI, Fowkes FJ, et al. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin Infect Dis. 2010 Oct 15. 51(8):e50-60. .
29. Olotu A, Lusingu J, Leach A, et al. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5-17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis. 2011 Feb. 11(2):102-9.
2. Ullah Z, Khattak AA, Bano R, Hussain J, Awan UA, Rahman SU. High incidence of malaria along the Pak-Afghan bordering area. J Pak Med Assoc. 2018;68:42-5.
3. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vect Born Dis 2018;55(1):1-5.
4. Admasie A, Zemba A, Paulos W. Insecticide-treated nets utilization and associated factors among under-5 years old children in Mirab Abaya District, Gamo-Gofa Zone, Ethiopia. Front Public Health. 2018;6:7.
5. Delil RK, Dileba TK, Habtu YA, Gone TF, Leta TJ. Magnitude of malaria and factors among febrile cases in low transmission areas of Hadiya Zone, Ethiopia: a facility based cross sectional study. PLoS ONE; 2016:11(5):e0154277.
6. Zgambo M, Mbakaya BC, Kalembo FW. Prevalence and factors associated with malaria parasitaemia in children under the age of five years in Malawi: a comparison study of the 2012 and 2014 Malaria Indicator Surveys (MISs). PLoS One. 2017;12(4):e0175537.
7. Prasad H, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low- and middle-income countries: a systematic review. PloS one 2015;10(6):e0127962.
8. Memon IA, Tariq S, Jamil A. Prevalence of malaria in young febrile children Pak Paed J 2012;36(2):70-4.
9. Abossie A, Yohanes T, Nedu A, Tafesse W, Damitie M. Prevalence of malaria and associated risk factors among febrile children under five years: a cross-sectional study in Arba Minch Zuria District, South Ethiopia. Infect Drug Resist. 2020;13:363–72.
10. [Guideline] Bailey JW, Williams J, Bain BJ, Parker-Williams J, Chiodini P. General Haematology Task Force. Guideline for laboratory diagnosis of malaria. London (UK): British Committee for Standards in Haematology. 2007;19. .
11. Bailey JW, Williams J, Bain BJ, et al. Guideline: the laboratory diagnosis of malaria. General Haematology Task Force of the British Committee for Standards in Haematology. Br J Haematol. 2013 Dec. 163 (5):573-80. .
12. Rapid diagnostic tests for malaria ---Haiti, 2010. MMWR Morb Mortal Wkly Rep. 2010 Oct 29. 59(42):1372-3. .
13. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007 Dec. 77(6 Suppl):119-27. .
14. Centers for Disease Control and Prevention. Notice to Readers: Malaria Rapid Diagnostic Test. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5627a4.htm. Accessed: September 30, 2011.
15. de Oliveira AM, Skarbinski J, Ouma PO, et al. Performance of malaria rapid diagnostic tests as part of routine malaria case management in Kenya. Am J Trop Med Hyg. 2009 Mar. 80(3):470-4. .
16. Polley SD, Gonzalez IJ, Mohamed D, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013 Aug. 208(4):637-44. . .
17. d'Acremont V, Malila A, Swai N, et al. Withholding antimalarials in febrile children who have a negative result for a rapid diagnostic test. Clin Infect Dis. 2010 Sep 1. 51(5):506-11. .
18. Mens P, Spieker N, Omar S, Heijnen M, Schallig H, Kager PA. Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Trop Med Int Health. 2007 Feb. 12(2):238-44. .
19. [Guideline] Centers for Disease Control and Prevention. Updated CDC Recommendations for Using Artemether-Lumefantrine for the Treatment of Uncomplicated Malaria in Pregnant Women in the United States. Available at https://www.cdc.gov/mmwr/volumes/67/wr/mm6714a4.htm?s_cid=mm6714a4_e#contribAff. April 2018; Accessed: April 13, 2018.
20. Dondorp AM, Fanello CI, Hendriksen IC, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010 Nov 13. 376(9753):1647-57. . .
21. Sinclair D, Donegan S, Isba R, Lalloo DG. Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev. 2012 Jun 13. 6:CD005967. .
22. US Food and Drug Administration FDA Approves Coartem Tablets to Treat Malaria. FDA. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm149559.htm. Accessed: April 8, 2009.
23. Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010 Nov 1. 202(9):1362-8. . .
24. Tozan Y, Klein EY, Darley S, Panicker R, Laxminarayan R, Breman JG. Prereferral rectal artesunate for treatment of severe childhood malaria: a cost-effectiveness analysis. Lancet. 2010 Dec 4. 376(9756):1910-5. .
25. Amaratunga C, Sreng S, Suon S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012 Nov. 12(11):851-8. .
26. Dondorp A, Nosten F, Stepniewska K, Day N, White N, South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005 Aug 27-Sep 2. 366 (9487):717-25. . .
27. Othoro C, Johnston D, Lee R, Soverow J, Bystryn JC, Nardin E. Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun. 2009 Feb. 77(2):739-48. . .
28. Richards JS, Stanisic DI, Fowkes FJ, et al. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin Infect Dis. 2010 Oct 15. 51(8):e50-60. .
29. Olotu A, Lusingu J, Leach A, et al. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5-17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis. 2011 Feb. 11(2):102-9.