ASSESSMENT OF POSTOPERATIVE WOUND INFECTION IN ELECTIVE VS. EMERGENCY SURGERIES

Main Article Content

Dr. Birendra Kumar

Keywords

Surgical site infection, emergency surgery, elective surgery, wound infection, antimicrobial resistance

Abstract

Background: Surgical site infections (SSI) represent a major healthcare challenge with significant morbidity and economic burden. Emergency surgeries are hypothesized to have higher infection rates compared to elective procedures due to suboptimal preoperative conditions and patient factors. This study aimed to assess and compare the incidence of postoperative wound infections between elective and emergency surgeries while identifying associated risk factors and evaluating clinical outcomes.


Methods: A prospective observational cohort study was conducted at Rama Medical College and Hospital, Hapur over six months. Five hundred patients (250 elective, 250 emergency) undergoing surgical procedures were enrolled using consecutive sampling. Data collection included demographic characteristics, surgical details, wound assessment, microbiological analysis, and economic parameters. Patients were followed for 30 days postoperatively using standardized CDC criteria for SSI diagnosis.


Results: Emergency surgeries demonstrated significantly higher SSI rates compared to elective procedures (16.8% vs. 7.2%, p=0.001). Emergency patients had higher ASA physical status scores, contaminated wound classifications (30.4% vs. 8.8%), and longer operative times (118.7±42.8 vs. 102.4±38.6 minutes). Staphylococcus aureus was predominant in both groups, with higher MRSA prevalence in emergency cases (44.4% vs. 20.0%). Emergency surgery SSI patients experienced longer hospital stays (12.6±4.8 vs. 8.4±3.2 days, p<0.001) and higher treatment costs (INR 48,260±12,840 vs. 34,680±8,420, p=0.002). Time to infection development was shorter in emergency cases (4.2±2.1 vs. 5.8±2.4 days).


Conclusion: Emergency surgeries carry a 2.33-fold higher risk of surgical site infections with increased severity, antimicrobial resistance, and healthcare costs. These findings emphasize the need for enhanced infection prevention protocols specifically tailored for emergency surgical procedures to improve patient outcomes and reduce healthcare burden.

Abstract 57 | Pdf Downloads 22

References

1. Allegranzi, B., Nejad, S. B., Combescure, C., Graafmans, W., Attar, H., Donaldson, L., & Pittet, D. (2011). Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet, 377(9761), 228-241. doi:10.1016/S0140-6736(10)61458-4
2. Anderson, D. J., Kaye, K. S., Classen, D., Arias, K. M., Podgorny, K., Burstin, H., ... & Yokoe, D. S. (2008). Strategies to prevent surgical site infections in acute care hospitals. Infection Control & Hospital Epidemiology, 29(S1), S51-S61. doi:10.1086/591064
3. Bratzler, D. W., Dellinger, E. P., Olsen, K. M., Perl, T. M., Auwaerter, P. G., Bolon, M. K., ... & Weinstein, R. A. (2013). Clinical practice guidelines for antimicrobial prophylaxis in surgery. American Journal of Health-System Pharmacy, 70(3), 195-283. doi:10.2146/ajhp120568
4. Burke, J. P. (2003). Infection control-a problem for patient safety. New England Journal of Medicine, 348(7), 651-656. doi:10.1056/NEJMhpr020557
5. Cruse, P. J., & Foord, R. (1980). The epidemiology of wound infection: a 10-year prospective study of 62,939 wounds. Surgical Clinics of North America, 60(1), 27-40. doi:10.1016/S0039-6109(16)42031-1
6. Culver, D. H., Horan, T. C., Gaynes, R. P., Martone, W. J., Jarvis, W. R., Emori, T. G., ... & Edwards, J. R. (1991). Surgical wound infection rates by wound class, operative procedure, and patient risk index. The American Journal of Medicine, 91(3), S152-S157. doi:10.1016/0002-9343(91)90361-Z
7. de Lissovoy, G., Fraeman, K., Hutchins, V., Murphy, D., Song, D., & Vaughn, B. B. (2009). Surgical site infection: incidence and impact on hospital utilization and treatment costs. American Journal of Infection Control, 37(5), 387-397. doi:10.1016/j.ajic.2008.12.010
8. Dellinger, E. P., Hausmann, S. M., Bratzler, D. W., Johnson, R. M., Daniel, D. M., Bunt, K. M., ... & Surgical Infection Society. (2005). Hospitals collaborate to decrease surgical site infections. The American Journal of Surgery, 190(1), 9-15. doi:10.1016/j.amjsurg.2005.04.009
9. Engemann, J. J., Carmeli, Y., Cosgrove, S. E., Fowler, V. G., Bronstein, M. Z., Trivette, S. L., ... & Sexton, D. J. (2003). Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clinical Infectious Diseases, 36(5), 592-598. doi:10.1086/367653
10. Gaynes, R., Richards, C., Edwards, J., Emori, T. G., Horan, T., Alonso-Echanove, J., ... & Tollson, J. (2001). Feeding back surveillance data to prevent hospital-acquired infections. Emerging Infectious Diseases, 7(2), 295-298. doi:10.3201/eid0702.700295
11. Haley, R. W., Culver, D. H., White, J. W., Morgan, W. M., Emori, T. G., Munn, V. P., & Hooton, T. M. (1985). The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. American Journal of Epidemiology, 121(2), 182-205. doi:10.1093/oxfordjournals.aje.a113990
12. Horan, T. C., Gaynes, R. P., Martone, W. J., Jarvis, W. R., & Emori, T. G. (1992). CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infection Control & Hospital Epidemiology, 13(10), 606-608. doi:10.2307/30148464
13. Keus, F., de Jong, J. A., Gooszen, H. G., & van Laarhoven, C. J. (2010). Laparoscopic versus open cholecystectomy for patients with symptomatic cholecystolithiasis. Cochrane Database of Systematic Reviews, 3, CD006231. doi:10.1002/14651858.CD006231.pub2
14. Kirkland, K. B., Briggs, J. P., Trivette, S. L., Wilkinson, W. E., & Sexton, D. J. (1999). The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infection Control & Hospital Epidemiology, 20(11), 725-730. doi:10.1086/501572
15. Klevens, R. M., Edwards, J. R., Richards Jr, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205
16. Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., & Jarvis, W. R. (1999). Guideline for prevention of surgical site infection, 1999. Infection Control & Hospital Epidemiology, 20(4), 250-278. doi:10.1086/501620
17. Owens, W. D., & Stoessel, L. W. (2008). ASA physical status classifications: a study of consistency of ratings. Anesthesiology, 49(4), 239-243. doi:10.1097/00000542-197810000-00003
18. Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: a clinical update. Clinical Microbiology Reviews, 18(4), 657-686. doi:10.1128/CMR.18.4.657-686.2005
19. Pessaux, P., Msika, S., Atalla, D., Hay, J. M., & Flamant, Y. (2003). Risk factors for postoperative infectious complications in noncolorectal abdominal surgery: a multivariate analysis based on a prospective multicenter study of 4718 patients. Archives of Surgery, 138(3), 314-324. doi:10.1001/archsurg.138.3.314
20. Poulsen, K. B., Bremmelgaard, A., Sørensen, A. I., Raahave, D., & Petersen, J. V. (1994). Estimated costs of postoperative wound infections: a case-control study of marginal hospital and social security costs. Epidemiology & Infection, 113(2), 283-295. doi:10.1017/S0950268800051697
21. Pronovost, P., Needham, D., Berenholtz, S., Sinopoli, D., Chu, H., Cosgrove, S., ... & Goeschel, C. (2006). An intervention to decrease catheter-related bloodstream infections in the ICU. New England Journal of Medicine, 355(26), 2725-2732. doi:10.1056/NEJMoa061115
22. Singh, S., Chakravarthy, M., Rosenthal, V. D., Myatra, S. N., Dwivedy, A., Bagasrawala, I., ... & Kelkar, R. (2013). Surgical site infection rates in six cities of India: findings of the International Nosocomial Infection Control Consortium (INICC). International Health, 7(5), 354-359. doi:10.1093/inthealth/ihu089 T. G. (1992). CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infection Control & Hospital Epidemiology, 13(10), 606-608. doi:10.2307/30148464
23. Kirkland, K. B., Briggs, J. P., Trivette, S. L., Wilkinson, W. E., & Sexton, D. J. (1999). The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infection Control & Hospital Epidemiology, 20(11), 725-730. doi:10.1086/501572
24. Klevens, R. M., Edwards, J. R., Richards Jr, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205
25. Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., & Jarvis, W. R. (1999). Guideline for prevention of surgical site infection, 1999. Infection Control & Hospital Epidemiology, 20(4), 250-278. doi:10.1086/501620
26. Pronovost, P., Needham, D., Berenholtz, S., Sinopoli, D., Chu, H., Cosgrove, S., ... & Goeschel, C. (2006). An intervention to decrease catheter-related bloodstream infections in the ICU. New England Journal of Medicine, 355(26), 2725-2732. doi:10.1056/NEJMoa061115
27. Singh, S., Chakravarthy, M., Rosenthal, V. D., Myatra, S. N., Dwivedy, A., Bagasrawala, I., ... & Kelkar, R. (2013). Surgical site infection rates in six cities of India: findings of the International Nosocomial Infection Control Consortium (INICC). International Health, 7(5), 354-359. doi:10.1093/inthealth/ihu089