OPTIMIZATION OF ULTRASOUND-ASSISTED EXTRACTION AND PHYSICOCHEMICAL CHARACTERIZATION OF PEONY SEED OIL FOR FUNCTIONAL FOOD APPLICATIONS
Main Article Content
Keywords
Peony Seed Oil, Ultrasonic-Assisted Extraction (UAE), Alpha Linolenic Acid (ALA), Antioxidant Capacity, Response Surface Methodology (RSM)
Abstract
Peony seed oil (PSO) is a promising source of high-value edible oil, rich in polyunsaturated fatty acids and bioactive compounds. However, its industrial-scale extraction remains suboptimal. In this study, ultrasound-assisted extraction (UAE) was optimized using a single-factor experimental design followed by response surface methodology (RSM), employing Design-Expert® software for process modeling and regression analysis. The optimal extraction conditions 45 °C, 1.5 h, and a solvent-to-solid ratio of 8:1 yielded a maximum oil recovery of 22.98%. The physicochemical characterization revealed a favorable fatty acid composition dominated by α-linolenic acid (43.1%), linoleic acid (27.4%), and oleic acid (24.3%). Antioxidant activity was evaluated through DPPH, ABTS, and FRAPS assays, demonstrated over 85% radical scavenging capacity, indicating significant oxidative stability and health-promoting potential. Further analysis showed conjugated diene and triene values of 3.52 and 3.34, respectively, and high β-carotene content (2,267 mg/kg). Stability assessments under thermal stress revealed that PSO deteriorates with increasing temperature. Supplementation with tocopherol and peony seed polyphenol extracts improved oxidative stability, with tocopherol exhibiting the most pronounced protective effect. Collectively, these findings highlight ultrasound-assisted extraction as an efficient, green technology for producing nutritionally rich, bioactive oil from peony seeds. The study supports the use of PSO as a sustainable functional food ingredient and a potential alternative to conventional edible-oils.
References
2. Farooq M., Iqbal M. A., Hussain M. 2021. Sustainable agriculture and food security. Sustainability 13(13):7124.
3. Gu X., Zhang W., Han L. 2014. Peony seed oil: The emerging edible oil with functional and nutritional characteristics. Journal of Food Science and Technology 51(10):2833-2841.
4. Hariri E. B., Yadav A. 2020. Therapeutic potentials of peony: Phytochemistry and pharmacological properties. Journal of Ethnopharmacology 248:112222.
5. Liu Z., Chen L., Liu X., Chen L., Xu H. 2019. Tocopherol and polyphenol contents, antioxidant, and anti-inflammatory properties of peony seed oil. Food Science and Biotechnology 28(3):825-833.
6. Maran J. P., Manikandan S., Nivetha C. V., Dinesh R. 2015. Box-Behnken design-based optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata.
7. Carbohydrate Polymers 123:67-71. Nam T. G., Lee S. M., Lee J. 2014. Flaxseed oil: Health benefits and therapeutic applications. Plant Foods for Human Nutrition 69(4):324-332.
8. Ning H., Tao N., He Q. 2015. Optimization of ultrasonic-assisted extraction of peony seed oil by response surface methodology. Journal of Agricultural and Food Chemistry 63(15):4005-4011.
9. Rodrigues S., Pinto G. A. S., Fernandes F. A. N. 2008. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. Food and Bioprocess Technology 1:274-277.
10. Sahena F., Zaidul I. S. M., Jinap S., Karim A. A., Abbas K. A., Norulaini N. A. N., Omar A. K. M. 2009. Application of supercritical CO2 in lipid extraction–A review. Journal of Food Engineering 95(2):240-253.
11. Simopoulos A. P. 2011. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 233(6):674-688.
12. Stamenković O. S., Tasić M. B., Veljković V. B., Xiang L. H. 2018. Ultrasonic extraction and modification of functional oils. Ultrasonics Sonochemistry 40:991-1001.
13. Wang Y., Zhu Y., Gao L., Zhao J., Zhang C., Zhang F. 2019. Antioxidant and anti-inflammatory activity of peony seed oil rich in omega-3 fatty acids. Food & Function 10(2):1191-1200.
14. Yang D., Chen X., Wang J., Chen S., Zhang W. 2021. Antioxidant properties of peony seed oil compared to olive oil and grapeseed oil. Antioxidants 10(6):803.
15. Yang Y., Sun Y., Zhuang W. 2017. Health benefits and culinary applications of unsaturated fatty acids. Nutrition Research Reviews 30(2):227-242.
16. Deng R., Song T., Hou X., Lu Z., Gao J., Yi J., Yang X., Zhu Y., Li M., Xia Q., Liu P. 2022. A novel pathway based on the comprehensive utilization of oil peony pods into high yield polysaccharides and strong adsorption carbon. Industrial Crops and Products 189:115843. https://doi.org/10.1016/j.indcrop.2022.115843
17. Farooq M., Iqbal M. A., Hussain M. 2021. Sustainable agriculture and food security. Sustainability 13(13):7124.
18. Gu X., Zhang W., Han L. 2014. Peony seed oil: The emerging edible oil with functional and nutritional characteristics. Journal of Food Science and Technology 51(10):2833-2841.Guo X., Shang X., Zhou X., Zhao B., Zhang J. 2017. Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: Antioxidant activity and rheological properties. Ultrasonics Sonochemistry 38:246–255. https://doi.org/10.1016/j.ultsonch.2017.03.021
19. Hariri E. B., Yadav A. 2020. Therapeutic potentials of peony: Phytochemistry and pharmacological properties. Journal of Ethnopharmacology 248:112222.
20. Hu B., Li C., Qin W., Zhang Z., Liu Y., Zhang Q., Liu A., Jia R., Yin Z., Han X., Zhu Y., Luo Q., Liu S. 2019. A method for extracting oil from tea (Camellia sinensis) seed by microwave in combination with ultrasonic and evaluation of its quality. Industrial Crops and Products 114:164–172. https://doi.org/10.1016/j.indcrop.2019.01.068
21. Junaid P. M., Dar A. H., Dash K. K., Ghosh T., Shams R., Khan S. A., Singh A., Pandey V. K., Nayik G. A., Bhagya Raj G. V. 2022. Advances in seed oil extraction using ultrasound assisted technology: A comprehensive review. Journal of Food Processing and Preservation 60:1222–1236. https://doi.org/10.1111/jfpe.14192
22. Liu P., Kang S., Liu D., Wang J., Wu Z., Deng R. 2024. A novel ultrasonic-assisted technique for eco-friendly extraction of oligostilbenes from the Paeonia delavayi seed coat and the inhibition on 3C-like protease. Industrial Crops and Products 174:118382. https://doi.org/10.1016/j.indcrop.2024.118382
23. Liu P., Deng R., Yan M., Zhang S., Yi J., Liu P., Zhang Y. 2021. Extraction, isolation and bioactivity of oligostilbenes from oil peony seed shells. Food Bioscience 41:101004. https://doi.org/10.1016/j.fbio.2021.101004
24. Maran J. P., Manikandan S., Nivetha C. V., Dinesh R. 2015. Box-Behnken design-based optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydrate Polymers 123:67–71.
25. Meng R., Ou K., Chen L., Jiao Y., Jiang F., Gu R. 2023. Response surface optimization of extraction conditions for the active components with high acetylcholinesterase inhibitory activity and identification of key metabolites from Acer truncatum seed oil residue. Foods 12(9):1751. https://doi.org/10.3390/foods12091751
26. Ning H., Tao N., He Q. 2015. Optimization of ultrasonic-assisted extraction of peony seed oil by response surface methodology. Journal of Agricultural and Food Chemistry 63(15):4005-4011.
27. Rodrigues S., Pinto G. A. S., Fernandes F. A. N. 2008. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. Food and Bioprocess Technology 1:274-277.
28. Sahena F., Zaidul I. S. M., Jinap S., Karim A. A., Abbas K. A., Norulaini N. A. N., Omar A. K. M. 2009. Application of supercritical CO2 in lipid extraction–A review. Journal of Food Engineering 95(2):240-253.
29. Shi G., Shen J., Wei T., Ren F., Guo F., Zhou Y. 2021. UPLC-ESI-MS/MS analysis and evaluation of antioxidant activity of total flavonoid extract from Paeonia lactiflora seed peel and optimization by response surface methodology (RSM). BioMed Research International 2021:7304107. https://doi.org/10.1155/2021/7304107
30. Simopoulos A. P. 2011. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 233(6):674-688.
31. Stamenković O. S., Tasić M. B., Veljković V. B., Xiang L. H. 2018. Ultrasonic extraction and modification of functional oils. Ultrasonics Sonochemistry 40:991-1001.
32. Wang X., Li X., Li Y., Zhang X., Zhang J., Zhang M. 2023. Comprehensive comparison of a new technology with traditional methods for extracting Ougan (Citrus reticulata cv. Suavissima) seed oils: Physicochemical properties, fatty acids, functional components, and antioxidant activities. LWT 197:115857. https://doi.org/10.1016/j.lwt.2024.115857
33. Wang X., Liu X., Shi N., Zhang Z., Chen Y., Yan M., Li Y. 2023. Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chemistry 405(B):134966. https://doi.org/10.1016/j.foodchem.2022.134966
34. Wang Y., Zhu Y., Gao L., Zhao J., Zhang C., Zhang F. 2019. Antioxidant and anti-inflammatory activity of peony seed oil rich in omega-3 fatty acids. Food & Function 10(2):1191-1200.
35. Yang D., Chen X., Wang J., Chen S., Zhang W. 2021. Antioxidant properties of peony seed oil compared to olive oil and grapeseed oil. Antioxidants 10(6):803.
36. Yang Y., Sun Y., Zhuang W. 2017. Health benefits and culinary applications of unsaturated fatty acids. Nutrition Research Reviews 30(2):227-242.
37. Yeasmen N., Sharma N., Bhuiyan M. H. R., Orsat V. 2023. Ultrasound as a techno-functional modifier in food frying and bioactive compounds extraction. Journal of Food Science 88(6):974–995. https://doi.org/10.1080/87559129.2023.2204156
38. Zhang J., Zhang M., Ju R., Chen K., Bhandari B., Wang H. 2022. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Critical Reviews in Food Science and Nutrition 62:11482–11503. https://doi.org/10.1080/10408398.2022.2092834
39. Zhanjun L., Yunwei L., Liang Y., Wang H., Yang F. 2023. Study of the optimization and kinetics of the surfactant-induced ultrasonic-assisted extraction of perilla seed oil: Free radical scavenging capacity and physicochemical and functional characteristics. Sustainable Chemistry and Pharmacy 32:100977. https://doi.org/10.1016/j.scp.2023.100977
40. Özkan G., et al. Antioxidant activity of peony seed oil and its role in oxidative stability. Journal of Food Science and Technology 2015 52(2):952-960. DOI: 10.1007/s13197-013-1129-3.
41. Tsimidou M., Nenadis N., Boskou D. Olive oil composition. In: Boskou D., Ed. Olive Oil: Chemistry and Technology, 3rd ed. AOCS Press, 2019:67-103. DOI: 10.1016/B978-1-893997-88-2.50010-3.