INULIN BASED NANO-ENCAPSULATED PROBIOTICS AS IMMUNE BOOSTING AGENT AGAINST GASTROINTESTINAL TRACT INFECTIONS: A CONTROLLED STUDY IN RAT MODEL
Main Article Content
Keywords
Probiotics, Inulin, Nanoencapsulation, Microbiota, Lactobaccili, Bifidobacteria
Abstract
Probiotics have been found to be effective in the treatment of many gastrointestinal diseases, they can be considered to be therapeutic agents. Reduction in diarrhea and improvement in growth of intestinal Bifidobacteria and Lactobacilli has been observed by using the combination of inulin and the probiotic microorganisms Lactobacillus acidophilus plus Bifidobacterium bifidum. This study designed to investigate the impact of nanoencapsulation of probiotics on microbiota and inflammatory markers in rat model. Sixty adult male albino rats were distributed into 10 groups (6 rats/group) for 2 rat’s trial (5 groups/trial). The first trial group containing 5 groups (6 rats/group) that named as normal trial group that remained normal (not induce diarrhea). The second trial group also contained 5 groups (6 rats/group) that named as diseased trial group (diarrhea induce in all group). The study continued for 14 days and each group was treated according to the treatment plan i.e. lactobaccili, bifidobacteria, encapsulated lactobaccili and encapsulated bifidobacteria, after which the rats were decapitated under anesthesia to get blood samples. When comparisons were made between normal trial groups and diseased trial groups, inulin based nanoencapsulated probiotics significantly (p≤0.05) increase the levels for hemoglobin (12.81±0.23 g/dL), RBC (7.32±0.03 M/µL), MCH (21.11±0.26 pg), MCV (58.60±0.30 fL) and decrease for MCHC (35.55±0.35 g/dL), WBC (13.53±0.30 ×103 /uL), and platelets count (948.67±3.50 ×103 /uL). Inulin based nanoencapsulated probiotics also cause a significant (p≤0.05) decrease for urea (53.00±2.36 mg/dL), creatinine (0.51±0.01 mg/dL), ALT (42.33±2.58 U/L), AST (41.16±3.18 U/L), CRP (4.61±0.24 mg/L) and ESR (4.03±0.27 mm/h). The levels of microbiota also increased after treatment with probiotics. This study supported the prospective use of inulin based nanoencapsulated probiotics in prevention and management of diarrhea.
References
2. Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: structure, function and allostery. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins, 345-382.
3. Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food science & technology, 18(5), 240-251.
4. Berger, R. M. F., Berger, M. Y., van Steensel-Moll, H. A., Dzoljic-Danilovic, G., & Derksen-Lubsen, G. (1996). A predictive model to estimate the risk of serious bacterial infections in febrile infants. European journal of pediatrics, 155, 468-473.
5. Bibi, Z., Fatima, N., Sarwar, M. Q., Younas, S., Manzoor, T., Rehman, A., & Bukhari, D. A. (2024). Effect of probiotics on hematology and histopathology of organs associated with immune system in male and female Wistar rats. Journal of King Saud University-Science, 36(9), 103375.
6. Choi, K. S., Kang, J. H., Cho, H. C., Yu, D. H., & Park, J. (2021). Changes in serum protein electrophoresis profiles and acute phase proteins in calves with diarrhea. Canadian Journal of Veterinary Research, 85(1), 45-50.
7. Constable, P. D., Hinchcliff, K. W., Done, S. H., & Grünberg, W. (2016). Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. Elsevier Health Sciences.
8. Delcenserie, V., Martel, D., Lamoureux, M., Amiot, J., Boutin, Y., & Roy, D. (2008). Immunomodulatory effects of probiotics in the intestinal tract. Current issues in molecular biology, 10(1-2), 37-54.
9. El-Seadawy, S., El-Attar, H. E. D., Elkhyat, H., & Helal, M. (2020). Clinical and biochemical investigations on bacterial diarrhea in Egyptian buffalo calves. Benha Veterinary Medical Journal, 39(2), 90-94.
10. Falana, M. B., Bankole, M. O., Ojo, D. A., Omemu, A. M., & Bankole, S. O. (2016). Efficacy and safety of leaf, bark and root extract of Vitellaria paradoxa on diarrhoea induced albino rats. Am J Microbiol Res, 4(3), 73-76.
11. Fathy, M. M., Fahmy, H. M., Balah, A. M., Mohamed, F. F., & Elshemey, W. M. (2019). Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study. Life sciences, 234, 116787.
12. Giannattasio, A., Guarino, A., & Vecchio, A. L. (2016). Management of children with prolonged diarrhea. F1000Research, 5, F1000-Faculty.
13. Guerrant, R. L., Oriá, R. B., Moore, S. R., Oriá, M. O., & Lima, A. A. (2008). Malnutrition as an enteric infectious disease with long-term effects on child development. Nutrition reviews, 66(9), 487-505.
14. Hashemi, R., Majidi, A., Motamed, H., Amini, A., Najari, F., & Tabatabaey, A. (2015). Erythrocyte sedimentation rate measurement using as a rapid alternative to the Westergren method. Emergency, 3(2), 50.
15. Ismail, R. S. A., & El-Gawad, S. H. A. (2010). Potential effect of Egyptian Anna apple pomace (Malus domestica, Rosaceae) supplementation on kidney function, liver function and lipid profile of diabetic rats.
16. Kanwar, J. R., & Kanwar, R. K. (2009). Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC immunology, 10, 1-19.
17. Keusch, G. T., Walker, C. F., Das, J. K., Horton, S., & Habte, D. (2016). Diarrheal diseases.
18. Khan, T. A., & Zafar, F. (2005). Haematological study in response to varying doses of estrogen in broiler chicken. International Journal of Poultry Science, 4(10), 748-751.
19. Kim, D. H., Kang, S. H., Jeong, W. S., Moon, H. S., Lee, E. S., Kim, S. H., & Jeong, H. Y. (2013). Serum C-reactive protein (CRP) levels in young adults can be used to discriminate between inflammatory and non-inflammatory diarrhea. Digestive diseases and sciences, 58, 504-508.
20. Kim, D. H., Kang, S. H., Jeong, W. S., Moon, H. S., Lee, E. S., Kim, S. H., & Jeong, H. Y. (2013). Serum C-reactive protein (CRP) levels in young adults can be used to discriminate between inflammatory and non-inflammatory diarrhea. Digestive diseases and sciences, 58, 504-508.
21. Köchl, S., Niederstätter, H., & Parson, W. (2005). DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Forensic DNA typing protocols, 13-29.
22. Lamps, L. W. (2007). Infective disorders of the gastrointestinal tract. Histopathology, 50(1), 55-63.
23. Luthfiana, N., & Utami, N. (2016). Faktor-faktor yang memengaruhi kejadian diare pada anak. Medical Journal of Lampung University [MAJORITY], 5(4), 101-106.
24. Malheu, J. (2007). Etude clinique, hématologique et biochimique de bovins issus de clonage somatique entre 4 mois et 24 mois (Doctoral dissertation, Ecole Nationale Vétérinaire d'Alfort).
25. Marteau, P. R., de Vrese, M., Cellier, C. J., & Schrezenmeir, J. (2001). Protection from gastrointestinal diseases with the use of probiotics. The American journal of clinical nutrition, 73(2), 430s-436s.
26. McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C., & Wainwright, C. L. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British journal of pharmacology, 160, 1573-1576.
27. McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C., & Wainwright, C. L. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British journal of pharmacology, 160, 1573-1576.
28. Nasri, N., Harahap, U., Silalahi, J., & Satria, D. (2022). Antidiarrheal Effect of Lactobacillus fermentum Isolated from Dengke Naniura on Escherichia coli-induced Rats. Indones. J. Pharm. Clin. Res, 5, 47-54.
29. Park, Y., Son, M., Jekarl, D. W., Choi, H. Y., Kim, S. Y., & Lee, S. (2019). Clinical significance of inflammatory biomarkers in acute pediatric diarrhea. Pediatric gastroenterology, hepatology & nutrition, 22(4), 369-376.
30. Sanders, S., Barnett, A., Correa-Velez, I., Coulthard, M., & Doust, J. (2008). Systematic review of the diagnostic accuracy of C-reactive protein to detect bacterial infection in nonhospitalized infants and children with fever. The Journal of pediatrics, 153(4), 570-574.
31. Shah, N. P. (2007). Functional cultures and health benefits. International dairy journal, 17(11), 1262-1277.
32. Shehta, A., El-Zahar, H., Mansour, A., Mustafa, B., & Shety, T. (2022). Clinical, hematological and some biochemical alterations during diarrhea in Friesian calves naturally infected with E. coli and Salmonella. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 128.
33. Shehta, A., El-Zahar, H., Mansour, A., Mustafa, B., & Shety, T. (2022). Clinical, hematological and some biochemical alterations during diarrhea in Friesian calves naturally infected with E. coli and Salmonella. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 128.
34. Singh, M., Gupta, V. K., Mondal, D. B., Bansal, S. K., Sharma, D. K., Shakya, M., & Gopinath, D. (2014). A study on alteration in Haemato-biochemical parameters in Colibacillosis affected calves. Int J Adv Res, 2(7), 746-750.
35. Soccol, C. R., Vandenberghe, L. D. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review.
36. Sun, X., Gao, Y., Wang, X., Hu, G., Wang, Y., Feng, B., & Dong, H. (2019). Escherichia coli O101-induced diarrhea develops gut microbial dysbiosis in rats. Experimental and therapeutic medicine, 17(1), 824-834.
37. Ternhag, A., Törner, A., Svensson, Å. Ekdahl, K., & Giesecke, J. (2008). Short-and long-term effects of bacterial gastrointestinal infections. Emerging infectious diseases, 14(1), 143.
38. Wolf, B. W., & Weisbrode, S. E. (2003). Safety evaluation of an extract from Salacia oblonga. Food and chemical toxicology, 41(6), 867-874.